Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы сварки и свойства соединений

Способы сварки и свойства соединений  [c.328]

Эксплуатационная надежность сварных конструкций во многом определяется выбранным способом сварки и свойствами полученного сварного соединения. При изготовлении сварных конструкций из титановых сплавов способ сварки приобретает особое значение, так как титан и его сплавы обладают высокой химической активностью и склонностью к газонасыщению (особенно при температурах выше 400°С), что значительно усложняет технологические процессы, связанные с их нагревом и плавлением.  [c.88]


ВЫБОР СПОСОБА СВАРКИ И СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ  [c.67]

Диффузионная сварка позволяет сваривать практически все известные конструкционные материалы. Хорошо свариваются разнородные материалы, в том числе и с сильно различающимися теплофизическими свойствами, не растворяющиеся друг в друге, образующие при других способах сварки хрупкие химические соединения. Можно сваривать, например, алюминий со сталью и титаном, сталь с чугуном, медь с молибденом. Свариваются металлы с неметаллами сталь с графитом, стекло с медью и т.д.  [c.275]

Источники питания для дуговой сварки являются основным элементом сварочного оборудования, обеспечивающим зажигание и гашение дуги, ее стабильное горение, управление ее физическими параметрами и технологическими свойствами. Выбор источника питания для дуговой сварки, требования к его проектированию и производству зависят от ряда факторов физических характеристик самой дуги (выступающей в качестве нагрузки в электрической цепи), особенностей конкретного способа сварки и свариваемого материала, требований к качеству сварного соединения и условий выполнения сварки. Первым и определяющим условием функционирования любого источника питания являются электрические характеристики дуги.  [c.110]

Под воздействием сварки в металле сварного соединения происходит ряд процессов образование физического контакта и металлической связи при смачивании или в процессе совместной пластической деформации, кристаллизация, диффузия, фазовые и структурные превращения, появление сварочных деформаций и напряжений. Это процессы местного характера, обусловливающие макро- и микроскопическую неоднородность состава, структуры и напряженного состояния сварного соединения по сравнению с основным металлом. Неоднородность, зависящая от физико-химических свойств основного и присадочных материалов, от способа, технологии сварки и конструкции соединения, предопределяет различную технологическую и эксплуатационную прочность и надежность сварной конструкции.  [c.8]

Свариваемостью называют комплексную технологическую характеристику стали, отражающую ее реакцию на тепловое и металлургическое воздействие процесса сварки и определяющую относительную пригодность этой стали для образования (получения) сварного соединения с заданными свойствами при применении технологически отработанных на данное время способов сварки и сварочных материалов.  [c.13]


Кратко описаны современные способы сварки в углекислом газе й его смесях с аргоном и кислородом плавящимся электродом сталей толщиной 0,8—30 мм во всех пространственных положениях. Приведены типичные режимы сварки -и свойства сварных соединений, даны рекомендации по повышению качества швов и производительности сварки. Приведены краткие сведения о серийной отечественной аппаратуре. даны рекомендации по повышению. надежности ее работы, организации работ.  [c.2]

Одним из важных направлений в исследовании свариваемости сплавов титана является изучение фазовых превращений, изменения структуры и свойств в условиях непрерывного нагрева и охлаждения при сварке, а также замедленного разрушения и образования холодных трещин в сварных соединениях. Реакция сплавов титана на термический цикл сварки в существенной мере определяет возможность их применения для сварных конструкций. Разнообразие существующих способов сварки и высокий уровень совершенства их технологии и автоматизации значительно расширили области использования титана и его сплавов в ответственных сварных изделиях и конструкциях авиационной, ракетной и судостроительной промышленности, а в последние годы и в химическом, энергетическом и общем машиностроении.  [c.7]

В настоящее время в сварных конструкциях применяются многие марки сталей, различающиеся между собой по химическому составу, термической обработке и механическим свойствам. Столь же значительно и число применяемых сварочных материалов, способов сварки и видов обработки соединений, обеспечивающих необходимые механические свойства сварных соединений. Целесообразно поэтому рассматривать лишь общие закономерности обеспечения необходимой прочности и пластичности сварных соединений.  [c.99]

Для повышения сопротивляемости сварных соединений образованию горячих трещин необходимо в процессе производства стремиться к такому сочетанию их свойств в т.и.х., технологических приемов и способов сварки, а также такому конструктивному оформлению узлов, которые обеспечивали бы при минимальных значениях деформации формоизменения максимальный уровень показателя а — а а. Для этого необходимо стремиться к уменьшению интервала хрупкости, увеличению пластичности металла шва в т.и.х. и снижению темпа деформации.  [c.487]

Допускаемые напряжения. Прочность сварных соединений, полученных конкретным способом сварки, зависит от следующих факторов качества основного материала характера действующих нагрузок (постоянные или переменные) технологических дефектов сварки (шлаковые и газовые включения, непровары и т. п.) деформаций, вызываемых сваркой различной структуры и свойств наплавленного и основного металла и др. Поэтому допускаемые напряжения при расчете сварных соединений принимают пониженными в долях от допускаемых напряжений для основного металла. Нормы допускаемых напряжений для сварных соединений деталей из низко- и среднеуглеродистых сталей при статической нагрузке указаны в табл. 3.2, а при переменных нагрузках — см. [12] и [18].  [c.272]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]


ГС — способ сварки плавлением, при котором металл в сварочной зоне нагревается пламенем газа (ацетилена, метана), сжигаемого для этой цели в смеси с кислородом в сварочных горелках. Преимущество ГС —это ее универсальность. С помощью ГС можно сваривать металлы различной толщины с различными свойствами (стали, чугуны, цветные металлы). Недостатками ГС являются трудность автоматизации процесса и длительное тепловое воздействие на металл, что приводит к изменению структуры и формы сварного соединения.  [c.57]

За последние годы в связи с развитием техники возникли потребности сварки новых, ранее не применявшихся материалов с особыми свойствами. В современной технике (особенно ракетной, авиационной, энергетической, атомной, химической, приборостроительной и др.) стали широко применяться в качестве конструкционных материалов тугоплавкие и в химическом отношении весьма активные металлы — молибден, тантал, вольфрам, ниобий, цирконий, бериллий и др. Это обусловило разработку способов сварки, основанных на новых физических принципах, так как при помош,и суш е-ствовавших методов не представлялось возможным получать доброкачественные соединения. В результате исследований, проведенных во многих странах, в том числе и в СССР, были изысканы новые источники нагрева, обеспечившие создание сварки электронными и когерентными лучами, плазменной дугой, ультразвуком, диффузионной сварки в вакууме, холодной сварки, сварки трением и др. Эти новые способы сварки внедряются в нашей стране.  [c.130]

В настоящее время сварные соединения можно образовывать двумя принципиально разными способами действием тепла при температурах плавления металлов или использованием явления схватывания металлов (ультразвук, холодная сварка и др.). Большие перспективы открывают возникшие в последнее время новые виды сварки — концентрированным потоком электронов в вакууме (электронно-лучевая сварка) и когерентным лучом (лазеры). При этих видах сварки можно проплавлять металл узким кинжальным швом, вследствие чего не требуется разделки кромок под сварку, снижаются термические деформации и повышается стойкость швов к образованию горячих трещин. Использование новых высококонцентрированных источников нагрева с предельно малым термическим воздействием, т. е. оказывающим наименьшее отрицательное влияние на изменение свойств основного металла (что является одной из важных задач технологии сварки новых материалов, в особенности высокопрочных и стойких против коррозии), приведет к значительному уменьшению объемов доводимого до расплавления  [c.143]

Проследим, как формируется металл шва, какие изменения структуры происходят в околошовной зоне и как структура металла шва влияет на механические свойства и надежность сварных соединений. Начнем с электродуговой и газовой сварки, так как формирование шва и околошовной зоны при этих способах сварки имеет много обш,его.  [c.168]

При сварке с защитой углекислым газом достигается очень высокое значение коэффициента наплавки. Сварные соединения при этом способе сварки выполняются в любых пространственных положениях. Они обладают хорошими механическими и технологическими свойствами. Сварка в среде углекислого газа применяется преимущественно для соединения элементов относительно небольших толщин (до 30 мм), однако  [c.118]

Указанные условия реализуются различными способами сварки путем энергетического воздействия на материал в зоне сварки. Энергия вводится в виде теплоты, упругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия. Прочность и другие свойства сварных соединений определяются свариваемостью материалов.  [c.221]

Сварка давлением незначительно изменяет химический состав, структуру и свойства металла. С ее помощью могут быть получены сварные соединения с такими же свойствами, как у основного металла без дополнительной обработки после сварки. Это одно из основных преимуществ сварки давлением перед сваркой плавлением. Но большинство способ ов сварки давлением (за исключением контактной сварки) требует создания особых условий (например, вакуума при диффузионной сварке, обеспечения безопасности работ при сварке взрывом), либо они применимы только для небольшой группы конструкций деталей. Поэтому сварка плавлением применяется чаще.  [c.7]

Таким образом, при всех способах сварки под действием энергии активации металл в зоне соединения изменяется, происходит его деформация и (или) плавление с последующим затвердеванием. Металл может взаимодействовать с окружающей атмосферой, компонентами шлаков, происходит изменение его структуры. Поэтому сварные соединения, как правило, отличаются от основного металла структурой, химическим составом металла и механическими свойствами. Особенно велики эти отличия при сварке плавлением.  [c.9]

Для получения нужных свойств сварного соединения в металл шва можно добавлять элементы, обеспечивающие эти свойства. Этот процесс называют легированием. Легирующие элементы вводят через присадочный металл, флюс или обмазку электрода в виде порошков или ферросплавов. Кроме того, легирующие элементы поступают в шов из основного металла при его плавлении. Необходимо, чтобы легирующие элементы имели меньшее сродство к кислороду, чем свариваемый металл. В противном случае вместе с ними нужно вводить более активный элемент, который свяжет кислород и уменьшит окисление легирующих элементов. Окислы легирующих элементов должны растворяться в шлаке, а не в металле шва. При расчете легирования учитывают долю основного металла в металле шва, а также потери легирующих элементов на разбрызгивание, испарение, образование химических соединений. Эти потери зависят от химической активности легирующих элементов, способа, режимов и особенностей условий сварки и учитываются коэффициентами перехода. Например, при ручной дуговой сварке коэффициент перехода марганца из электрода с качественной обмазкой может быть 0,45...0,55.  [c.23]


В производстве металлоконструкций ручная дуговая сварка покрытыми электродами используется чаще других способов сварки. Это обусловлено ее очевидными преимуществами достаточно высокими свойствами сварных соединений, возможностью применения в труднодоступных местах, простотой и надежностью оборудования, широким выбором типов сварочных электродов и, следовательно, большим диапазоном технологических возможностей  [c.109]

Мартенситно-стареющие стали хорошо свариваются всеми способами сварки. Они мало чувствительны к образованию холодных и горячих трещин, обеспечивают высокие механические свойства сварных соединений. Технология сварки проста и надежна. Сваривать можно без подогрева и без последующего отпуска, обеспечивая нужные свойства операцией старения. Чаще всего применяют электронно-лучевую и дуговую сварку в аргоне с неплавящимся электродом и с присадочной проволокой близкого к основному металлу состава. Применяют импульсную дугу, колебания электрода поперек стыка деталей. Большие толщины сваривают в щелевую разделку (устанавливая между кромками деталей зазор, в который вводят электрод). Все это обеспечивает мелкозернистую структуру металла шва и близкие к основному металлу механические свойства.  [c.188]

Сварка на повышенных силах тока приводит к получению металла швов с пони/кенными показателями пластичности и ударной вязкости, что вероятно объясняется повышеппыми скоростями охлаждения. Свойства металла шва, выполненного на обычных режимах, соответствуют свойствам металла шва, выполненного электродами типа Э50А. В промышленности находит применение и сварка в углекислом газе порошковыми проволоками. Технология этого способа сварки и свойства сварных соединений примерно те же, что и при использовании их при сварке без дополнительной защиты.  [c.227]

Слоистая ликвация способствует увсличеиию химической неоднородности металла па этом участке по сравнению с металлом шва. Состав и структура металла в этой зоне зависят также от диффузии элементов, которая может проходить как из основного нерасплавившегося металла в Лчидкий металл, так и наоборот. Этот участок по существу и является мостом сварки. Его протяжсп-ность зависит от состава и свойств металла, способа сварки и обычно не превышает 0,5 мм, но свойства металла в нем могут оказывать решающее влияние па свойства всего свар юго соединения.  [c.212]

Различные условия кристаллизации сварочной ванны приводят также к структурной неоднородности отдельных зон сварных соединений /5/, то есть к появлению прослоек, отличающихся своей структурой. Связь между структурой химически однородных сталей и сплавов и их механическими свойствами устанавливается в металловедческих исследованиях. В некоторой степени это может быть перенесено и на сварные соединения, например, для способов сварки без присадочного металла (контактная стьшовая, точечная, шовная и другие способы сварки давлением, когда соединение поверхностей производится с образованием или литого ядра из основного металла, или за счет плавления и деформации торцев). Однако в большинстве случаев для сварных соединений приходится учитывать совместное влияние химической и структурной неоднородности.  [c.14]

Под термином "Сварка подразумеваются термические процессы, обеспечивающие получение неразъемных соединений деталей, наплавку, пайку, нанесение на поверхности разгшчных покрытий с особыми свойствами, а также резку. В машиностроении сварка — один из ведущих технологических процессов при производстве конструкций самого различного назначения. В промышленности широко применяются более пятидесяти различных способов сварки и их разновидностей, что обусловило современное разнообразие типов, компоновок и конструкций сварочного оборудования.  [c.10]

Способ сварки и тип сварного соединения определяют требования к технологичности его конструкции. В конструкции сварной заготовки не должно быть резких (ступенчатых) переходов по толщине металла (рис. S2). В противном случае возможно разрушение конструкции вследствие концентрации напряжений. Предельные значения толщин свариваемых элементов заготовок приведены в табл. 84, 85. Термообработка сварных заготовок производится с целью улучшения свойств металла шва и ОКОЛОЩ(ШНОЙ зоны и для снятия остаточных напряжений.  [c.299]

Сварные соединения, которые, как клеевые и формованые соединения, основаны на техническом состоянии слипания и рассматриваются как частный сл) ай адгезии [1], можно условно отнести к группе адгезионных соединений (см. главу 1). Основные их признаки — исчезновение границы раздела между соединяемыми поверхностями и образование переходного слоя с однородной или разнородной по отношению к материалам деталей структурой. Это дало основание называть их аутогезионными соединениями [2, с. 30]. Сварное соединение — сочетание деталей в сборочном узле, выполненное посредством сварки. Свойства сварных соединений зависят от типа полимерного материала, их конструкции, условий нагружения, выбранного способа сварки. В зависимости от взаимного расположения соединяемых деталей различают стыковые, нахлесточные, раструбные, тавровые, муфтовые, встык с накладками, угловые и др. сварные соединения [3 4, с. 31]. Каждый из этих видов может иметь различное исполнение в зависимости от конструкции деталей, типа ПМ и выбранного способа сварки. Участок сварного соединения, непосредственно связывающий элементы изделия, называют сварным швом. Прочность связи между свариваемыми материалами, как и когезия [5], обусловливается возникающими в зоне шва силами межатомного и межмолекулярного взаимодействия.  [c.324]

Сварочные процессы обусловливают ряд специфических требований к составу, структуре и свойствам металлических сплавов. В настоящее время разработка и применение конструкционных металлических материалов невозможны без учета этих требований. Успех в создании и внедрении в промышленность новых металлических сплавов с высокими механическими и особыми физическими свойствами во многом определяется степенью разработки вопросов металлургии и металловедения сварки этих материалов. Разнообразие существующих способов сварки и высокий уровень совершенства их технологии и автоматизации существенно расширяют возможность соединения трудносвариваемых материалов.  [c.5]

Свариваемость и другие свойства. Стали 30X13 и 40X13 для сварных конструкций не принимаются. Подвержены отпускной хрупкости. Пластичность при холодной деформации пониженная. Зака.шваются на воздухе. Возможно азотирование на глубину не более 0,2 мм с твердостью слоя не менее HR 56. Сталь 14Х17Н2 ограниченно сваривается. Способ сварки — РДС. Сварные соединения  [c.240]

Однако в некоторых случаях на свойства металла зон термического влияния и особенно наиболее высоконагреваемых при сварке участков, близких к границе сплавления, влияет и правильный выбор сварочных материалов. Это влияние определяется как количеством водорода, диффундирующего из шва в зону термического влияния, так и полем собственных внутренних напряжений в околошовной зоне, связанным с соотношением составов и свойств металлов шва и зоны термического влияния. Пластические свойства сварных соединений, иногда сразу после сварки невысокие, восстанавливаются, возрастая в несколько раз после выдержки при комнатной температуре. Темп и степень такого повышения пластичности часто определяются количеством водорода, вводимого в металл шва при том или ином способе сварки и применяемых сварочных материалах.  [c.14]


Вопросы точности и стабильности размеров конструкции, конечно, не исчерпываются выбором способа сварки. Существенным является учет сварочных деформаций и напряжений, назначение технологических мероприятий по их уменьшению. Эти вопросы решают на стадии рабочего проектирования как с целью обоснования значений допусков и припусков, так и с точки зрения целесообразности проведения термообработки. Применение термообработ1Ш, с одной стороны, улучшает механические свойства и структуру сварных соединений, способствуя повышению их работоспособности. С другой стороны, многие весьма ответственные изделия вполне надежно работают после сварки без ка-кой-либо термической обработки. Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности в условиях серийного производства. Вопрос о необходимости термообработки после сварки решают, принимая во внимание химический состав свариваемого и присадочного металла, способ сварки, конструктивное оформление соединений и узлов, требования к механическим свойствам, условия эксплуатации и т.д.  [c.432]

При изготовлении сварных конструкций из разнородных сталей используется большинство существующих способов сварки. Наибольшее распространение из них получила ручная дуговая сварка как процесс, обеспечивающий наибольшую гибкость регулирования степени проплавления свариваемых кромок. При сварке сталей одного структурного класса в большинстве случаев отсутствуют ограничения по уменьшению степени проплавления и соответственно могут применяться те же способы и режимы, что и для однородных соединений. При сварке сталей разного структурного класса выбор способа сварки и ее режима определяется предельной степенью проплавления свариваемых кромок. При использовании способов с повышенным проплавлением кромок, как, например, при электрошлаковой сварке, технологическая и конструктивная прочность соединения должны определяться подбором сварочных материалов, обладающих низкой чувствительностью к повышению степени проплавления. Перспективным является использование электронно-лучевой сварки как при непосредственном контактировании свариваемых кромок, так и с вбедением промежуточной прослойки, состав которой выбирают из условия получения оптимальных свойств щва. Для стыковки труб в котлостроении широко применяют контактную сварку сопротивлением, в компрессоро-строении и других отраслях широко внедрена сварка взрывом, все большее распространение находит диффузионная сварка.  [c.438]

В зависимости от протяженности шва, то.ищины и марки металла, жесткости конструкции и т. д. применяют различные приемы последовательности сварки швов и заполнения разделки (рис. 20). Сварку напроход обычно применяют при сварке коротких швов (до 500 мм). Швы длиной до 1000 мм лучше сваривать от середины к концам или обратноступенчатым методом. При последнем способе весь шов разбивают на участки по 150—200 мм, которые должны быть кратны длине участка, наплавляемого одним электродом. Сварку швов в ответственных конструкциях большой толщины выполняют блоками, каскадом или горкой, что позволяет влиять на структуру металла шва и сварного соединения и его механические свойства.  [c.27]

Таким образолс, различные участки основного металла характеризуются различными максимальными температурами и различными скоростями нагрева и охлаждения, т. е. подвергаются своеобразной термообработке. Поэтому структура и свойства основного металла в различных участках сварного соединения различны. Зону основного металла, в которой под воздействием термического цикла при сварке произо1нли фазовые и структурные изменения, называют зоной термического влияния. Характер этих превращений и протяженность зоны термического влияния зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т. п.  [c.211]

Механизированная сварка под флюсом. Конструктивные элементы подготовки кромок под автоматическую и полуавтоматическую сварку под флюсом выполняют такими же, как и при сварке углеродистых и низколегированных незакаливающихся конструкционных сталей, т. е. в соответствии с рекомендациями ГОСТ 8713—70. Однако в диапазоне толщин, для которого допускается сварка без разделки и со скосом кромок, последней следует отдать предпочтение. Наряду с затруднениями, связанными с образованием холодных трещин в околошовпой зоне и получением металла шва и других зон сварного соединения со свойствами, обеспечивающими высокую работоспособность сварных соединений, при механизированной сварке под флюсом швы имеют повышенную склонность к образованию горячих трещин. Это связано с тем, что при данном способе сварки доля основного металла в металле шва достаточно велика.  [c.252]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]

Сварка низколегированной стали 20ГС. Сталь 20ГС (ГОСТ 4543—61) имеет хорошую свариваемость при электрошлаковом способе и обеспечивает достаточно высокие механические свойства металла шва и сварного соединения. Небольшое содержание углерода в стали позволяет производить электрошлаковую сварку без предварительного и последующего подогрева, не опасаясь появления трещин.  [c.524]

Исследование фрикционных свойств материалов и природы физико-химических явлений, протекающих на поверхности раздела тел в условиях сухого трения, является актуальной задачей не только в связи с решением проблемы повышения надежности и долговечности машин, но и в связи с решением ряда технологических задач обработки и соединения металлов, в частности при осуществлении некоторых способов сварки в твердой фазе (термокомпрессионная, клинопрессовая, экструзионная, трением, сдвигом). Общность методических экспериментальных и теоретических подходов к решению этих задач обусловлена тем фактом, что особенности проявления динамики трения и износа, а также кинетики процессов схватывания и соединения материалов в твердой фазе в существенной степени определяются кинетикой развития микро-  [c.99]

В книге рассмотрена физическая природа образования монолитных соединений в твердо.м, холодном и нагрето.м состояниях металлов. На основаипи принципов физического металловедения сформулированы основы сварки металлов в холодном и нагретом пластичных состояниях. Изложены способы холодной сварки. Представлен анализ технологических методов и режимов, известных в отечественной и зарубежной практике. Впервые показаны технологические методы улучшения свариваемости и механических свойств соединений трудносвариваемых металлов и сплавов.  [c.180]

Армирующие углеродные волокна являются хрупкими и не обладают способностью к пластическим деформациям. Этот фактор ограничивает выбор методов переработки металлокомпозитов. Как указывалось выше, анизотропия механических характеристик армированных углеродными волокнами материалов дает возможность получать материалы с регулируемыми свойствами. Это достигается в процессе формования готового изделия из полуфабрикатов. При использовании армированных металлов в самолетостроении часто возникает необходимость последующих технологических операций соединения изделий из армированных металлов с деталями из других металлических материалов, частичное усиление армированными металлами элементов металлических конструкций и т. д. Однако обычная сварка армированных металлов затруднена. Поэтому необходимо прибегать к методу диффузионной сварки и другим способам соединения металлов, не требующим плавления металла. Другой путь решения этой задачи — соединять детали из металлокомпозитов с элементами из чистых металлов в процессе формования ме-таллокомпозита.  [c.245]



Смотреть страницы где упоминается термин Способы сварки и свойства соединений : [c.209]    [c.19]    [c.97]   
Смотреть главы в:

Сварка и свариваемые материалы Том 1  -> Способы сварки и свойства соединений



ПОИСК



219 — Сварка и соединения

584-589 - Свойства 585-589 - Способы

Выбор способа сварки и свойства сварных соединений

Сварк свойства

Сварка Свойства

Соединения Свойства

Способы сварки

Способы соединения



© 2025 Mash-xxl.info Реклама на сайте