Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение диссипативных систем

Движение диссипативных систем  [c.178]

Приведем теперь теорему, которая является далеко идущим обобщением теоремы Лагранжа для консервативных систем и доказанной выше теоремы для диссипативных систем и вместе с тем является частным случаем общей теоремы об устойчивости движений, доказанной Ляпуновым.  [c.233]

Учитывая обязательное для диссипативных систем условие F х, р)>0, мы приходим к выводу, что выражение (l/p)f (х, у) должно быть знакопеременным и принимать знак, совпадающий со знаком у, т. е. со знаком скорости движения в системе или тока в электрическом контуре.  [c.43]


Для многих диссипативных систем сила трения зависит только от скорости (или силы тока) и не зависит от координаты (заряда), однако характер этой зависимости может быть различным в зависимости от свойств системы и условий, в которых совершается изучаемое движение.  [c.43]

Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]

Т. е. полная механическая энергия системы убывает во время движения. Саму систему в этом случае называют диссипативной. Иногда говорят, что происходит рассеивание, или диссипация, энергии. Отсюда и возник термин диссипативные силы .  [c.279]

Общее решение задачи о свободных колебаниях. Рассмотрим линейную диссипативную систему, движение которой описывается матричным уравнением (1) с симметричными матрицами А, В и С. Уравнение будет удовлетворено, если положить  [c.91]

Влияние диссипативных и гироскопических сил иа устойчивость равновесия (движения) линейных систем. Приведенные ниже теоремы, связанные с именами Кельвина и Тета, относятся к изменению характера устойчивости систем, находящихся под действием консервативных позиционных сил, при добавлении диссипативных и (или) гироскопических сил [114].  [c.96]


Позже (1960) Четаев подчеркивал, что в строгой установившейся теории реальные возмущающие силы не должны делать неустойчивыми хорошо наблюдаемые невозмущенные устойчивые равновесия или движения механической системы. В частности, Четаев пришел к заключению, что малые диссипативные силы с полной диссипацией, всегда реально существующие в нашей природе, являются гарантийным силовым барьером, делающим пренебрежимыми влияния нелинейных возмущающих сил на движения консервативных систем.  [c.15]

В качестве причины взаимодействий статистического характера до сих пор приводился пример теплового движения частиц газа. Другими важными примерами служат влияние тепловых колебаний решетки, а также влияние хаотического электромагнитного излучения на атомную систему. К этим случаям также применима схема воздействия диссипативной системы на динамическую, тогда как обратное действие нас здесь не интересует, поскольку диссипативную систему мы считаем очень большой.  [c.101]

Сегодня можно дать вполне четкое теоретическое обоснование возможности существования устойчиво воспроизводящихся геометрических форм поверхностей при изнашивании в заданных условиях относительного движения и нафужения. Это обоснование строится на фундаментальных принципах термодинамики диссипативных систем, какими являются трибосистемы. В таких системах, обменивающихся с другими системами и внешней средой энергией и массой (например, массой изношенных частиц), могут возникать стационарные состояния, характеризуемые постоянным фадиентом энтропии  [c.496]

Существуют строгие доказательства асимптотической устойчивости стационарных состояний диссипативных систем по Ляпунову. В терминах и понятиях теории трения и изнащивания В.В. Шульц [33] сформулировал частный принцип самоорганизации фрикционного контакта следующим образом устойчивой будет лишь та форма поверхности изнашивающегося контакта, которая соответствует энергетическому минимуму в заданном относительном движении при установившемся про-  [c.496]

Рассмотрим распространение методов гамильтоновой механики на неконсервативные системы. Здесь ограничимся исследованием диссипативных систем с конечным числом степеней свободы. Укажем случаи, когда удается построить в явном виде обобщенный потенциал и уравнения движения непотенциальных систем привести к гамильтоновой форме  [c.156]

В отличие от гамильтоновых систем с их фундаментальным законом сохранения фазового объема для диссипативных систем характерно его постоянное уменьшение со временем. Это приводит к тому, что все траектории движения притягиваются к некоторой поверхности (аттрактору), размерность которой меньше, чем у исходного фазового пространства. При этом уравнения движения уже не являются каноническими, но их можно записать, вообще  [c.73]

Более серьезная теоретическая проблема заключается в том, что при этом смазывается четкое различие между хаотическими и регулярными траекториями. Например, в случае двумерного гамильтонова отображения имеется конечное число состояний системы М = и после п М. итераций система обязательно вернется в одно из предыдущих состояний. В результате все траектории такой системы оказываются периодическими. Это остается справедливым и для диссипативных систем. В каком смысле можно считать движение такой системы случайным  [c.308]

Диссипативные системы обладают той особенностью, что при их движении фазовый объем сжимается к аттрактору более низкой размерности, чем исходное пространство. При этом если какой-либо параметр системы изменяется, то регулярное движение на аттракторе может смениться хаотическим, и наоборот. Хотя наши знания о хаотическом поведении диссипативных систем ни в коей мере нельзя считать полными, все же к настоящему времени многие особенности такого движения хорошо изучены. Разработаны также методы теоретического анализа диссипативных систем.  [c.410]

Переход к стохастичности через бесконечную цепочку бифуркаций удвоения периодического движения является довольно типичным для диссипативных систем [18, 19]. Объясняется это тем, что многие диссипативные системы, в том числе и высокого порядка (с многомерным фазовым пространством), вблизи границы перехода описываются с достаточной степенью точности гладким не взаимно однозначным одномерным отображением (рис. 22.66). Природу этого явления мы обсудим в следующем параграфе. Здесь же приведем два примера, иллюстрирующие рассматриваемый путь перехода диссипативной системы к стохастическому поведению.  [c.479]


Весы можно рассматривать как динамическую диссипативную систему с одной степенью свободы. Для вывода уравнения движения весов используют уравнение Лагранжа  [c.166]

В диссипативных системах дело обстоит иначе. В фазовой пространстве имеется некоторое предельное и инвариантное множество состояний, к которым притягиваются все траектории фазовой капли. Поэтому асимптотически при (->-оо движение системы происходит на этой предельном множестве. Хаотическое движение в диссипативных системах также реализуется на этом множестве, которое имеет хаусдорфову размерность, меньшую чем размерность всего фазового пространства (подробнее об этом си. ниже). Это предельное притягивающее множество, возникающее при стохастическом движении диссипативных систем, было названо странный аттрактором [202]. В гамильтоновом случае имеет место некоторая предельная ситуация, в которой странным аттрактором является все фазовое пространство (это будет доказано позже).  [c.251]

Если уравнения движения диссипативных систем свести к гамильтоновой форме, то можно воспользоваться известными методами для исследования диссипативных систем. Это, в частности, позволит указать один из способов обоснования построения кинетического уравнения для непотенциальных систем и построить континуальную модель двухкомпонентного потока. Для этого в первую очередь необходимо построить обобщенную функцию Гамильтона Н (соответственно обобщенную функцию Лагранжа L ), которая учитывала бы диссипативные 9илы и давала бы возможность представить канонические уравнения движения в гамильтоновой форме.  [c.157]

Известны попытки построения обобщенной функции Лагранжа для частных случаев линейных диссипативных систем [4, 27, 84, 115—117]. При этом существует два способа вводится дополнительная система, поглощающая энергию, выделяемую диссипативной системой, или отыскивается замена переменных, преобразующая уравнения движения диссипативных систем в уравнения с нулевой правой частью. В монографии [84] наряду с заданной системой рассматривается ее зеркальное отражение , обладающее отрицательным трением . Полная энергия двух систем остается постоянной. Построение обобщенной функции Лагранжа производится на примере системы гармонических осцилляторов со стоксовским трением. При этом  [c.157]

В настоящей монографии рассматривается стохастическое, или хаотическое, движение нелинейных колебательных систем. Это — быстроразви-вающаяся область нелинейной механики с приложениями во многих областях науки и техники, включая астрономию, физику плазмы, статистическую механику и гидродинамику. Основное внимание уделяется динамической стохастичности в гамильтоновых системах, когда хаотическое движение обусловлено самой динамикой, а не внешним шумом. Вместе с тем рассматривается также и влияние шума на движение динамической системы. В последней главе подробно обсуждаются основные особенности хаотического движения диссипативных систем.  [c.11]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Виды динамических систем. По характеру ур-ний и методам исследования Д. с. делят на классы. Конечномерные и бесконечномерные (распределённые) Д. с.—системы с конечномерным и бесконечномерным фазовым пространством. В конечно-мерно.м случае консервативные и диссипативные Д. с. — системы с сохраняющимся и несохраняющимся фазовым объёмом. Г амильтоновы системы с ф-цией Гамильтона, не зависящей от времени, образуют подкласс консервативных систем. У диссипативных систе.м с неогранич. фазовым нространством часто существует ограниченная область в нём, куда попадает навсегда любая траектория. Д. с. с н е п р е-рывным временем (потоки) и Д. С. с дискретным временем (каскады) дискретность времени иногда отражает существо реального процесса (дискретность моментов прохождения импульса через усилитель п оптическом квантовом генераторе, сезонность в экологии, смена поколений в генетике н т. д.). Грубые и пегрубые Д. с. понятие грубости (структурной устойчивости) характеризует качественную неизменность типа движения Д. с. при малом изменении её параметров. Значения параметров, при к-рых система перестаёт быть грубой, наз. б и ф у р-к а ц и о н н ы м II (см. Бифуркация). При размерности фазового пространства больше 2 могут существовать целые области в пространстве пара.метров, где Д. с. оказывается негрубой.  [c.626]


Приведенные в обзоре результаты показывают, что, несмотря на некоторую специфику неголономных систем, исследование устойчивости и бифуркаций стационарных движений данных систем вполне успешно может быть проведено на основе модифицированной теории Рауса-Сальвадори и Пуанкаре-Четаева, если эти системы допускают первые интегралы, заданные в явной или в неявной формах, и теории Ляпунова-Малкина и Андронова-Хопфа, если эти системы являются системами общего вида, т. е. не допускают первых интегралов, отличных от интеграла энергии, но обладают диссипативными (см. замечания 4.3 и 4.4) свойствами.  [c.462]

Проблема существования устойчивых стационарных движений (нульмерных инвариантных множеств) впервые была исследована в [1]. Действительно, известная теория Рауса [1-15] дает не только условия устойчивости стационарных движений консервативных механических систем с первыми интегралами, но и метод определения таких движений. Этот метод был распространен на случай определения не только устойчивых стационарных движений [2, 7] и на случай диссипативных систем с первыми интегралами [12-15.  [c.62]

Широко распространенной точке зрения, согласно которой деформационное упрочнение при пластическом течении есть результат возрастания сопротивления среды движению носителей деформации за счет изменения характеров как самих носителей, так и барьеров, в определенной мере противостоит релаксационный переход к описанию этого процесса [2] (см. гл. 1). Он предполагает, что рождение, движение и объединение дефектов в более крупные агрегаты, перестройка дефектов внутри агрегатов и преобразование последних связываются со стремлением нагружаемого объекта снизить уровень напряжений. В таком случае следует учитывать, что поле напряжений внутри объекта неоднородно, а наблюдаемое нарастание деформирующего напряжения отражает некий средний уровень. В связи с неоднородностью поля напряжений пластическая деформация также неоднородна, п развивается локализованно в областях концентрации напряжений. Такие представления позволяют использовать синергетический подход к описанию пластической деформации и рассматривать нагружаемый объект как далекую от равновесия диссипативную систему. При этом предполагается диссипация упругой энергии, поэтому данный процесс напрямую связан с релаксацией полей напряжений. В кристаллических твердых телах релаксация напряжений (а следовательно, и диссипация энергии) может осуществляться рождением и миграцией точечных дефектов, рождением и движением (консервативным пли неконсервативным) дислокаций, образованием и перестройкой дислокационных ансамблей, рождением и перемещением дисклинаций и их ассоциатов, перестройкой и миграцией границ различного рода (блочных, доменных, границ фрагментов и ячеек, межзеренных) и, наконец, нарушением сплошности, т. е. образованием трещин. В специфических условиях релаксация осуществля  [c.64]

Появление странных аттракторов в трехмерных потоках, таких, как модель Лоренца, указывает на один из возможных механизмов возникновения гидродинамической турбулентности. Это стимулировало исключительно точные экспериментальные измерения вблизи перехода от ламинарного к турбулентному течению в реальных жидкостях. Модель Лоренца была получена фактически из задачи о конвекции Рэлея—Бенара в подогреваелюм снизу слое жидкости с учетом только трех мод движения. Хаотическое движение в трехмерной модели Лоренца представляет возможную картину турбулентности и в некоторых реальных гидродинамических системах, которая оказывается проще, чем первоначальные представления Ландау [251 I. Динамика диссипативных систем рассматривается в гл. 7, включая одномерные и двумерные отображения, а также гидродинамические приложения.  [c.20]

В первом параграфе этой главы обсуждаются основные свойства диссипативных систем, такие, как сжатие фазового объема и регулярное движение на простых аттракторах. Затем вводится понятие странного аттрактора со стохастическим движением. В 1.5 уже приводился пример странного аттрактора. Здесь же обсуждаются два других примера диссипативных систем со странными аттракторами система Рёслера и отображение Хенона. Особое внимание обращается на те свойства хаотического движения, которые связаны с возможностью перехода к одномерному отображению, а также с геометрической структурой странного аттрактора. Эта геометрия описывается в терминах канторовых множеств дробной фрактальной размерности. Обсуждаются способы вычисления такой размерности и ее связь с показателями Ляпунова.  [c.410]

Переход к хаотическому движению через бифуркации удвоения периода является, как мы увидим, характерным для широкого класса диссипативных систем как отображений, так и потоков. При этом зависимость бифуркаций от параметра и форма спектра оказываются универсальными вблизи перехода. Эти вопросы будут расслютрены в 7.2 и 7.3.  [c.419]

Мы уже видели, что хаотическое движение может возникать в диссипативных потоках с размерностью фазового пространства не меньше трех, или в соответствующих этим потокам обратимых отображениях Пуанкаре, размерность которых не менее двух. В общем случае хаотическое движение имеет место лишь для узких интервалов параметров. В этом существенное отличие от гамильтоновых систем, где хаотическое движение сохраняется, как правило, в широком диапазоне параметров. Ниже описаны два критерия локальной стохастичности для диссипативных систем. В п. 7.3а метод квадратичной ренормализации применяется к двумерным обратимым отображениям и показывается сходимость последовательности бифуркаций удвоения периода и возникновение локального хаотического движения. В п. 7.36 получен критерий перехода к хаотическому движению вблизи сепаратрисы на примере вынужденных колебаний осциллятора с затуханием. Наконец, в п. 7.3в pa ютpeнa модель ускорения Ферми с диссипацией и используется описание хаотического движения с помощью уравнения ФПК. Это уравнение позволяет получить первое приближение для инвариантного распределения на странном аттракторе.  [c.453]

В случае гамильтоновой системы и канонических переменных х равновесное распределение Р (л ) = с, где постоянная с>0 на всей хаотической компоненте движения и с = О вне ее. Если хаотическая компонента заполняет почти все фазовое пространство, как, например, в стандартном отображении (3.1.22) при /С 1, то Р = 1/т, где т — объем произвольной области фазового пространства, по которой производится интегрирование в (7.3.47). Однако для диссипативных систем Р (л ) априори неизвестно и его нужно находить для каждого интересующего нас аттрактора ). Основной метод определения Р (х) состоит в итерировании (7.3.45)  [c.466]

В 7.4 отмечалось, что одной из основных целей изучения диссипативных систем является гидродинамическая турбулентность. Другая чрезвычайно интересная область связана с турбулентностью в химических реакциях. Закон действующих масс, опреде-ляюший временную эволюцию однородной химической системы,, приводит к нелинейным дифференциальным уравнениям первога порядка ). Каждому веществу соответствует одно уравнение, так что для М веществ получается УИ-мерный поток типа, рассмотренного в 7.1. Поэтому неудивительно, что мы встречаем здесь все-виды движения, описанные в гл. 7, включая простые и странные аттракторы.  [c.494]


Интенсивные исследования нелинейных диссипативных систем с трехмерным фазовым пространством позволили в последние годы обнаружить совершенно новый класс автоколебательных систем. Это автогенераторы шума — диссипативные системы, совершающие незатухающие хаотические колебания, колебания со сплошным спектром за счет энергии нешумовых источников. Замечательно, что даже столь привычный нам осциллятор (14.10) в широкой области параметров является автогенератором шума. Открытие стохастических автоколебаний — это, пожалуй, наиболее яркое достижение современной теории. Почему же оно появилось только сейчас Дело в том, что со времен Пуанкаре до недавнего времени предельный цикл был единственным примером нетривиального притягивающего множества в фазовом пространстве нелинейных диссипативных систем. Правда, уже довольно давно были обнаружены сложные многопетлевые предельные циклы. Устойчивые многопериодические движения были обнаружены при исследовании синхронизации автогенераторов.  [c.305]

Для каждой конкретной системы проверка этих условий представляет собой чрезвычайно трудную математическую задачу. Поэтому мы обычно будем ограничиваться проверкой более слабых условий. В частности, будем пользоваться критерием стохастичности, в основе которого лежит определение величины Н, характеризующей разбегание соседних траекторий в линейном приближении если эта величина положительна, то движение стохастично . Математическим образом стохастического движения динамической системы является стохастическое множество траекторий в ее фазовом пространстве. Для гамильтоновых систем и диссипативных систем эти множества обладают различными свойствами.  [c.463]

Сочетание ВУ с устройством прямого измерения изменяет все характеристики весов чувствительность, период колебаний, условия демпфирования, уравнение движения [13]. Для вывода уравнения движения воспользуемся уравнением Лагранжа, рассматривая весы как динамическую диссипативную систему с одной степенью свободы. Изменением углов наклона тяг, вследствие их малости, при колебаниях весов можно пренебречь и за обобщенную координату принять угол отклонения коромысла, а за обобщенную скорость производную этого угла по времени. Силы сопротивления жидкостного успокоителя колебаний и силы сопротивления ножевых опор принимаем пропорциональными первой степени скорости, коэффициент жесткости упругого элемента силоизмерителя считаем постоянным, не зависящим от деформации. С учетом этого получим дифференциальное уравнение колебаний при внутридиапазонном уравновешивании  [c.82]


Смотреть страницы где упоминается термин Движение диссипативных систем : [c.268]    [c.237]    [c.45]    [c.99]    [c.701]    [c.401]    [c.82]    [c.209]    [c.457]   
Смотреть главы в:

Сборник задач по аналитической механике Изд3  -> Движение диссипативных систем



ПОИСК



Движение системы

Система диссипативная



© 2025 Mash-xxl.info Реклама на сайте