Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аттрактор простой

Нетрудно видеть, что множество предельных точек Z . ограниченной фазовой траектории x(i) не пусто и состоит из фазовых траекторий. Однако физически, т. е. с учетом неизбежных малых возмущений, приближение фазовой траектории к предельному множеству Ха будет наблюдаться лишь в том случае, когда — предельное множество не только для фазовой траектории x(i), но и для всех других фазовых траекторий, близких к Х . Если множество Ха обладает этим свойством асимптотической устойчивости, то оно является аттрактором. Простейшие аттракторы — это асимптотически устойчивые состояния равновесия и периодические движения.  [c.124]


Уравнение Дуффинга (29) при (5 = 0 всегда имеет хаотические решения вблизи сепаратрисы. Хаотическое движение в этом случае происходит в узком слое и ограничено инвариантными кривыми. При > О уравнение (29) является аналогом уравнения Дуффинга во времени с учетом диссипации и, следовательно, возможно суш ествование стохастических аттракторов. Действительно, при (5 > О происходит разрушение инвариантных линий, ограничиваюш их стохастичность вблизи сепаратрисы, и фазовые траектории могут уходить от нее достаточно далеко и попасть в область притяжения устойчивого фокуса или цикла. Таким образом, как показано с помогцью аналогового моделирования [17], при выполнении условия (35) и (5 > О траектория блуждает в окрестности сепаратрисы, пока не попадет на какой-либо аттрактор, простой или странный (стохастический).  [c.380]

Оставшиеся рисунки иллюстрируют дальнейшие возможные изменения фазового портрета. На рис. 20д показан момент образования -критического седло-узла его исчезновение приведет к рождению странного аттрактора. На рис. 20 е изображено первое простое касание неустойчивого и устойчивого многообразий точки Q. В этот момент и при дальнейшем изменении параметров, приводящем к рождению гомоклинических точек транс-версального пересечения, аттрактор в кольце является странным. На рис. 20 ж уже произошла бифуркация удвоения периода точки N и возникла устойчивая двоякопериодическая траектория (замкнутой инвариантной кривой не стало). При дальнейшем изменении параметров может реализоваться каскад  [c.51]

Простейшими аттракторами будут очевидно устойчивое положение равновесия, устойчивый предельный цикл, притягивающий двумерный тор.  [c.159]

Новый аттрактор может оказаться и просто лежащим в стороне устойчивым положением равновесия быстрого движения. Именно так обстоит дело для системы Ван дер Поля и, вообще, для систем с одной быстрой переменной (так как типичные движения системы общего положения с одномерным фазовым пространством приближаются к невырожденным устойчивым положениям равновесия).  [c.171]

Дальнейшее имеет целью развитие этих простых соображений и их приложение к вопросам возникновения хаотических и стохастических движений и аттракторов как их геометрических образов в фазовом пространстве.  [c.127]

Аттрактор Лоренца и его негрубость сохраняются и вообще при всех достаточно малых изменениях правых частей уравнения (1). А отсюда, очевидно, следует, что не существует сколь угодно близкой к системе (1) грубой системы и, следовательно, грубые системы не всюду плотны в пространстве трехмерных систем. Так как для двумерных систем всюду плотность грубых систем в пространстве динамических систем была чрезвычайно важным свойством, то в этом кардинальном вопросе разница между двумерными ц многомерными динамическими системами очень существенна ). Тем не менее понятие грубости динамических систем трех и большего числа измерений — в простейшем случае систем Морса — Смейла или даже в еще более упрощенной ситуации, например, в случае систем Морса — Смейла с конечным числом ячеек, все же сохраняет свое значение. Большое значение (как математическое, так и для приложений) имеет также рассмотрение бифуркаций многомерных динамических систем через негрубые системы. Мы сделаем по этому поводу некоторые краткие замечания.  [c.471]


Данная глава посвящена рассмотрению некоторых нелинейных процессов в классических сложных физических системах. Речь идет, фактически, об открытых системах, через которые могут протекать потоки энергии и информации (негэнтропии). На простейшем примере конвекции жидкости показано, как может возникать неустойчивость, приводящая при превышении надкритичности к сложному нелинейному поведению, в частности, к странному аттрактору.  [c.317]

Макроскопические величины, такие как скорость, плотность, температура и концентрация химических веществ, являются непрерывными функциями точки, т.е. физическими полями. Поэтому формально такие поля имеют бесконечное число степеней свободы. Однако при появлении порядка или развитии структур возбуждается только конечное число степеней свободы. Особенно хорошо это видно на примере ячеек Бенара или вихрей Тейлора. Поэтому системы с упорядочением часто можно рассматривать как системы с конечным числом степеней свободы, они допускают моделирование (по крайней мере, численное) простыми динамическими системами. Напомним, что именно на примере описания конвекции жидкости были найдены странные аттракторы.  [c.341]

В настоящей главе мы продолжаем пополнять наш список примеров, двигаясь в нескольких направлениях. Сначала будем искать гиперболические множества, которые являются аттракторами (см. определение 3.3.1). До сих пор все известные нам примеры такого вида, а именно сжимающиеся периодические орбиты, гиперболические автоморфизмы тора, где весь тор был аттрактором, и произведение этих двух систем, когда инвариантный тор, сужение автоморфизма на который гиперболично, притягивает все точки в своей окрестности, были достаточно просты с геометрической точки зрения. В первых двух параграфах мы опишем гораздо более замысловатые примеры гиперболических аттракторов.  [c.533]

В литературе уже отмечалась странность этого термина [74]. Для современной эргодической теории подобный аттрактор является, напротив, естественным. Его существование вытекает, в частности, из теоремы Аносова [8] о структурной устойчивости хаоса для динамических систем определенного класса, которые получили позднее название систем Аносова. С другой стороны, упоминаемая ниже фрактальная структура хаотического аттрактора не является универсальной, это может быть, например, и просто тор.— Прим. ред.  [c.19]

Под интегрируемостью диссипативной системы здесь понимается, по-видимому, существование простого аттрактора — устойчивого фокуса или предельного цикла.— Прим. ред.  [c.58]

Проблема согласования расходимости близких траекторий на аттракторе с его ограниченностью возникает только при минимальной размерности аттрактора, равной двум (имеется в виду обычная, целая размерность, ср. п, 7.1в). При большей размерности расходимость в линейном приближении сменяется перемешиванием траекторий хаотический аттрактор может иметь при этом простую форму, например, тора.— При.ч. ред.  [c.74]

Простые и странные аттракторы  [c.410]

Стационарное хаотическое движение. Нужно подчеркнуть, что условие пересечения сепаратрис (7.3.38) является локальным критерием стохастичности и применимо только вблизи невозмущенной сепаратрисы. Поэтому такой критерий ничего не говорит о появлении странного аттрактора, который представляет стационарное хаотическое движение в большой области фазового пространства. Уравнение Дюффинга без диссипации (б = 0) является гамильтоновым и всегда имеет хаотические решения вблизи сепаратрисы. Мы знаем, что хаотическое движение в этом случае происходит в узком слое и ограничено инвариантными кривыми. Однако при б>0 все инвариантные кривые разрушаются и траектория, хаотическая вблизи сепаратрисы, может уйти далеко от нее и захватиться устойчивым фокусом или предельным циклом. Такое поведение наблюдал Холмс [195] при аналоговом моделировании уравнения Дюффинга ). Поэтому единственное, что можно ожидать при выполнении условия пересечения сепаратрис (7.3.38), — это нерегулярное блуждание траектории в течение некоторого времени, пока она не попадет на какой-либо аттрактор, простой или странный.  [c.463]

Будем говорить, что низкие температуры находятся в области притяжения arrpai ropa Т = О, а высокие - в области притяженм аттрактора Т = со. Точки Кюри Тс - граница между двумя областями притяжения. Когда магнит находится при этой температуре, он выглядит одинаково при любых масштабах, а его температура не изменяется при перенормировке Rb(TJ = просто потому, что он не может решить , к какому аттрактору ему следует направиться. На языке динамических систем мы говорим, что Тс - репеллер процесса перенормировки. Если температура магнита даже весьма незначительно отклоняется от Тс, то это отклонение увеличивается перенормировкой, а повторения (итерации) этого процесса ведут к одному из известных случаев, т. е. к идеальному порядку (Т = 0) или к полному беспорядку (Т= ао).  [c.86]


Установившемуся движению диссипативной системы отвечает аттрактор — множество траекторий, к к-рому притягиваются все близкие траектории. Ста-тич., периодич. или квазипериодич. режимам отвечают простейшие аттракторы состокние равновесия, перно-дич. траектория и тор соответственно. Сложному непе-риодич. режиму отвечает странный аттрактор. С фи л. точки зрення, диссипативность системы означает, что все движения с достаточно большой анергией затухают.  [c.626]

Поскольку системы существенно диссипативны, а образами установившихся движений являются простые аттракторы, то действие шумов иля внутр. флуктуаций веравновесной среды, как правило, качественно не влияет на процесс С. (конечно, если эти шумы и флуктуации достаточно малы).  [c.413]

BOM пространстве даже весьма простых течений. Наиб, известный пример—конвекция в подогреваемой тороидальной полости, расположенной в вертикальной плоскости. Образом хаотич. колебаний вращат. движения жидкости внутри такой полости служит странный аттрактор— аттрактор Лоренца. По совр. представлениям, в фазовом пространстве для ур-ний Навье—Стокса при определ. условиях должен существовать странный аттрактор, движение по к-рому соответствует режиму установившейся Т.  [c.183]

Механизм проявления устойчивости привычен и ясен, возможно, благодаря внедрению в наше сознание интуиции, опирающейся на теорему Брауэра и принцип сжатых отображений Банаха. Асимптотическая устойчивость всегда влечет за собой устойчивые равновесия или устойчивые периодические движения. Асимптотически устойчивое ограниченное движение — это либо устойчивое состояние равновесия или устойчивое периодическое движение, либо движение, асимптотически приближающееся к одному из них. Механизм проявления неусто11чивоста много сложнее и непривычнее. Для того чтобы его понять, нужно прежде всего отбросить представление о физической реали -зуемости движения как о требовании его устойчивости — сохра нения близости невоэмущенной и возмущенной фазовых траекторий. Близость траекторий может не сохраняться, более того, траектории могут локально экспоненциально разбегаться. Отдельные фазовые траектории при этом физически пе реализуемы, но они реализуемы как некоторая совокупность движений, обладающих определенной общностью. Представить себе все это не просто, и, возможно, поэтому геометрический образ, состоящий из таких фазовых траекторий, получил название странный аттрактор — странное притягивающее множество.  [c.44]

Несмотря па сложность и необычность такого образования, получившего название странного аттрактор , условия его возникновения очень просты сочетание глобального сжатия с локальной неустойчивостью. Конечно, остается неясным, возможно ли такое сочетание, но если оно возможно, то неизбеншо влечет за собой существование странного аттрактора.  [c.44]

В предыдущей главе были рассмотрены простейшие тпповыв ситуации, приводящие к существованию сложных нетривиальных сеДловых инвариантных множеств /. Если такое сложное инвариаптное множество / еще и притягивающее, то оно — странный аттрактор, обладающий свойством локальной неустойчивости, по устойчивый в целом. Наряду с таким статическим изучением сложных седловых множеств / представляют интерес и исследования, выясняющие, как они возникают в динамике — при изменении параметров. Сочетание статического и динамического подходов позволяет не только полнее исследовать стохастические и хаотические движешя, но во многих случаях облегчает их обнаружение и изучение.  [c.162]

Таковы возможные пути исчезновения устойчивых движений — необходимой предпосылки хаотизации и стохастизации движений динамической системы. Сами по себе они еще не приводят к хаотизации движений, но необходимы для ее возникновения. Более того, в областях, где нет устойчивых состояний равновесия и периодических движений, хаотизация может возникнуть и без этой предварительной подготовки , не в результате подмены простого аттрактора хаотическими движепиями. Хаотические движения могут жестко возникнуть в области притяжения состояния равновесия или периодического движения.  [c.215]

Для систем большой размерности, в том числе бесконечномерных, отыскание численных значений показателей Ляпунова, как и непосредственное вычисление величин а, d ж К, является сложной задачей. Поэтому представляет интерес сравнительно простая вычислительная процедура, которая позволяет оценить ляпуновские показатели, размерность аттрактора и метрическую энтропию, зная реализацию лишь одной из координат фазового пространства. Эта процедура была предложена Паккардом [600] и Такенсом [657]. Использование такой процедуры особенно удобно при обработке экспериментальных результатов для распределенных систем, где знать весь бесконечномерный вектор x(i) просто невозможно [681].  [c.235]

Состояние равновесия называется устойчивым, если достаточно малое возмущение всегда останется малым . Такое устойчивое состояние равновесия (устойчивый фокус) называют простым аттрактором (от англ. attra t — притягивать), В том случае, когда в уравнении (44) 7 < О (такая ситуация возникала в модели экономического маятника ) состояние равновесия становится неустойчивым (неустойчивый фокус), и все спиральные траектории уходят от него (рис. 2.16). Такое неустойчивое состояние равновесия называют репеллером (от англ. repeli — отталкивать).  [c.85]

Принципиально новая ситуация, касающаяся непрерывной зависимости решений от параметров, возникла в связи с развитием теории странных аттракторов [29]. Хотя теория аттракторов сравнительно далеко продвинута только для достаточно простых динамических систем [176], первоначальные сомнения в том, что она применима в гидродинамике, были рассеяны как прямыми экспери-мептальпыми подтверждениями [93, 198, 201], так и теоретически, когда было обнаружено развитие хаотической динамики сразу после потери равновесия состояния покоя при возникновении смешанной тепловой и концентрационной конвекции [154]. В построенных примерах непрерывная зависимость решений от параметров нарушается уже не при отдельных их значениях, а на множестве значений параметров положительпой меры.  [c.13]


О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]

Для реальной диссипации (с11у г> < 0) матрица В должна удовлетворять условию Тг В < О, в других случаях она определяет гироскопическое или управляющее воздействие. Такая постановка изучалась, например, в работе [241], где, в частности, указаны параметры, при которых в системе (1.1) одновременно существует два странных аттрактора. На рис. 72-76 приведены различные случаи системы (1.1), в наиболее простых из них случаи Гринхилла, Клейна-Зоммерфельда) траектории ложатся на некоторые интегральные поверхности, в наиболее сложном система обладает двумя странными аттракторами.  [c.256]

Странные аттракторы. Первые простейшие моделп (см. гл. 2), в которых исследовались ус.ювия появ.1епия стохастичности, уже были не гамильтоновыми. Однако наиболее интенсивное изучение диссипативных систем началось после работы Лоренца [200]. Работа была посвящена анализу возникновения турбулентности в процессе термоконвекции в так называемом конечномерном приближении ). Численный анализ, проведенный Лоренцем, показал, что прп некоторых условиях в модели возникает хаос. Как и полагается, переход к нему (т. е. к турбулентности) происходит через ряд бифуркаций решения (их исследование см. в [201]). Однако, если можно так выразиться, хаос имеет весьма необычную структуру. Опишем ее следующим образом.  [c.250]

В системах с диссипацией фазовый объем сокрашается в процессе движения. В простейшем случае такая система эволюционирует к состоянию равновесия — соответствующая траектория в фазовом пространстве имеет вид устойчивого фокуса. При подпитке энергией извне диссипативная система может испытывать устойчивые колебания — это устойчивый цикл в фазовом пространстве (в многомерном случае — тор), а может перейти в режим сложного стохастического движения, которое получило название странного аттрактора. Таким образом, все траектории диссипативной системы в фазовом пространстве соответствуют аттракторам — равновесию, периодическим колебаниям или странному аттрактору. Одним из аттракторов может быть разрушение системы.  [c.340]

Если диссипативная система имеет много степеней свободы, то у нее может быть много зон притяжения в фазовом пространстве. Если они составлены из устойчивых фокусов, то система будет стремиться к одной из точек устойчивого равновесия. В этом случае говорят о мультиравновесной системе — это простейший пример запоминаю-шего устройства для компьютера. Предельное состояние может быть также одним из многих предельных циклов — такие запоминающие устройства также существуют (например, циклическая цепочка бегущих друг за другом цилиндрических магнитных доменов). В более общем случае система может стремиться к одному из многих возможных аттракторов, включая странные аттракторы. При выведении такой системы из заданного аттрактора с помощью внешнего  [c.340]

Подобно тому как вращения окружности и сдвиги на торе являются частными примерами сдвигов на компактных абелевых группах, автоморфизмы и эндоморфизмы тора являются простейшими примерами автоморфизмов и эндоморфизмов компактных абелевых групп. Топологический сдвнг Бернулли, обсуждаемый в следующем параграфе, и аттрактор Смейла, который обсуждается в 17.1, также могут рассматриваться как автоморфизмы компактных абелевых групп. Изучение динамики к эргодической теорнн автоморфизмов компактных абелевых групп связано с вопросами, относящимися к коммутативной алгебре, алгебраической геометрии и в особенности алгебраической теории чисел. Эта взаимосвязь хорошо представлена в книге Шмидта [287], [288].  [c.723]

Новая область явлений возникает в диссипативных системах, фазовый объем которых не остается постоянным, а сокращается со временем. Конечное состояние в этом случае представляет собой движение на некотором подпространстве, называемом аттрактором, размерность которого меньше размерности исходного фазового пространства. Изучение регулярного движения в таких системах восходит к Ньютону и в дальнейшем было связано с развитием теории обыкновенных дифференциальных уравнений. На этой ранней стадии было выяснено, что траектория может притягиваться к таким простым аттракторам, как неподвижные точки, замкнутые траектории и торы, на которых устанавливается, соответственно состояние равновесия, периодическое и квазипериоди-ческое движение. И только сравнительно недавно, в пионерской работе Лоренца [283], было показано, что и в диссипативных системах встречается хаотическое движение. Лоренц обнаружил такой аттрактор в модели, описываемой системой обыкновенных нелинейных дифференциальных уравнений. Рюэль и Тэкенс [355 ] использовали для аттрактора с хаотическим движением термин странный аттрактор ). Топология странных аттракторов весьма примечательна. Она характеризуется масштабной инвариантностью ), при которой структура аттрактора повторяется на все более мелких пространственных масштабах. Такие структуры, называемые фракталами, обладают любопытным свойством дробной размерности, промежуточной между размерностью точки и линии, линии и плоскости и т. д.  [c.19]

Уравнения (1.5.1), приводящие к возникновению странного аттрактора, зависят обычно от некоторого параметра (аналогичного величине возмущения в гамильтоновых системах), изменение которого меняет характер движения. На примерах модели Хенона— Хейлеса и ускорения Ферми мы видели, что в гамильтоновых системах при увеличении возмущения траектории из регулярных становятся стохастическими. Подобно этому, и в диссипативных системах при изменении параметра возможен переход от периодического движения к хаотическому на странном аттракторе. Во гао-гих случаях такой переход происходит путем последовательного удвоения периода движения вплоть до некоторого критического значения параметра, за которым структура аттрактора изменяется и движение становится хаотическим. Дальнейшее увеличение параметра может привести к обратному процессу или к появлению простого аттрактора другой симметрии. Еще одна интересная особенность таких систем заключается в том, что обычно можно найти поверхность сечения, на которой движение сводится приближенно к необратимому одномерному отображению. Необратимость означает здесь многозначность обратного отображения. Такие отображения возникают во многих физических задачах и будут подробно рассмотрены в 7.2.  [c.76]


В первом параграфе этой главы обсуждаются основные свойства диссипативных систем, такие, как сжатие фазового объема и регулярное движение на простых аттракторах. Затем вводится понятие странного аттрактора со стохастическим движением. В 1.5 уже приводился пример странного аттрактора. Здесь же обсуждаются два других примера диссипативных систем со странными аттракторами система Рёслера и отображение Хенона. Особое внимание обращается на те свойства хаотического движения, которые связаны с возможностью перехода к одномерному отображению, а также с геометрической структурой странного аттрактора. Эта геометрия описывается в терминах канторовых множеств дробной фрактальной размерности. Обсуждаются способы вычисления такой размерности и ее связь с показателями Ляпунова.  [c.410]


Смотреть страницы где упоминается термин Аттрактор простой : [c.817]    [c.610]    [c.610]    [c.100]    [c.412]    [c.695]    [c.696]    [c.125]    [c.219]    [c.295]    [c.20]    [c.74]    [c.404]    [c.409]    [c.409]   
Регулярная и стохастическая динамика (0) -- [ c.19 , c.41 , c.73 , c.74 , c.76 , c.80 , c.413 , c.440 , c.442 , c.464 ]



ПОИСК



Аттрактор

Простые и странные аттракторы



© 2025 Mash-xxl.info Реклама на сайте