Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптический квантовый генератор

Рис. 6.10. Схема охлаждения оптического квантового генератора вихревой трубы Рис. 6.10. Схема охлаждения оптического квантового генератора вихревой трубы

Местное расплавление соединяемых частей при лазерной сварке осуществляют энергией светового луча, полученного от оптического квантового генератора — лазера.  [c.4]

Лазерный луч. При лазерной сварке для местного расплавления соединяемых частей используют энергию светового луча полученного от оптического квантового генератора-лазера. По виду активного вещества-излучателя лазеры разделяют на твердые, газовые, жидкостные и полупроводниковые, по принципу генерации лазерного луча — импульсные и непрерывные.  [c.16]

Выполнение этих условий позволяет создавать систему, способную генерировать когерентное световое излучение. Такая система получила название оптический квантовый генератор (ОКГ) или лазер.  [c.120]

Оптический квантовый генератор (см.  [c.554]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]

Явление люминесценции нашло широкое применение в науке, технике и в быту. Люминесцентные вещества являются активной средой оптических квантовых генераторов, применяются на светящихся экранах, в люминесцентных лампах и т. д. Кратко остановимся в этом параграфе только на двух применениях.  [c.373]

ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР (ЛАЗЕР)  [c.378]


Оптические квантовые генераторы (ОКГ) или лазеры являются качественно новыми источниками света, обладающими рядом важных свойств.  [c.378]

Принцип усиления света в оптических квантовых генераторах по трехуровневой схеме, который лежал в основе создания лазерных установок, был предложен Н. Г. Басовым и А. М. Прохоровым в 1955 г. Независимо от них американский физик Ч. Таунс с сотрудниками осуществил квантовый генератор электромагнитного излучения на молекулах аммиака. Эти работы советских и американских физиков положили начало бурному развитию квантовой электроники, за что им в 1964 г. была присуждена Нобелевская премия по физике.  [c.383]

Высокая монохроматичность лазерного излучения обусловлена еще и тем, что при выборе специального режима генератора из возможных мод отбираются те, которым соответствуют весьма малые числа /п . В результате ширина спектральных линий для оптических квантовых генераторов становится значительно меньше, чем ширина спектральной линии люминесценции .  [c.387]

В этой связи следует обратить внимание на то, что до появления оптических квантовых генераторов считалось принципиально невозможным преодоление предела существующей до тех пор монохроматичности, определяемой естественной шириной спектральной линии, обусловленной, в свою очередь, конечностью времени высвечивания отдельного атома.  [c.387]

Оптические квантовые генераторы, дающие одну моду, называются моно-модными или одночастотными.  [c.387]

Оптическая сила 272 Оптический квантовый генератор 315  [c.362]

Укажем, что излучение лазера (оптического квантового генератора) в наибольшей степени отвечает сформулированным требованиям — расходимость пучка очень мала, и излучается обычно строго определенная длина волны. Однако и это утверждение требует более подробного обсуждения.  [c.32]

Настоящее издание книги, пересмотренное и дополненное группой учеников и бывших сотрудников Г. С. Ландсберга, наряду с частично модернизированной трактовкой прежнего материала, содержит изложение физических основ новых направлений оптики, сложившихся за последние годы. Подавляющая часть материала, введенного в книгу, непосредственно или косвенно связана с созданием оптических квантовых генераторов (лазеров).  [c.9]

Основные физические идеи голографии были сформулированы Д. Габором в 1948 г. в связи с проблемой повышения разрешающей способности электронных микроскопов. Габор подтвердил свои теоретические соображения экспериментами в оптической области спектра. Однако в силу указанных трудностей голография развивалась очень медленно вплоть до создания оптических квантовых генераторов, излучение которых, по самому принципу их работы, исключительно монохроматично и обладает высокой степенью про-  [c.260]

Ячейки Керра как модулятор и затвор применяются для управления режимом работы оптических квантовых генераторов (см. 226).  [c.536]

Отличие удерживающей силы от квазиупругой фактически оказывается существенным для очень мощного света, который можно получить с помощью оптических квантовых генераторов это отличие обусловливает особенности так называемых нелинейных оптических явлений, которые рассматриваются в гл. ХЫ. В тех же явлениях, с которыми мы имели дело до сих пор, и во многих других соотношение (156.3) выполняется с очень хорошим приближением.  [c.551]

Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин волн. Правда, излучение разреженных газов, поставленных в специально благоприятные условия, может довольно близко подходить к этому воображаемому случаю так, наблюдаются спектральные линии , в излучении которых представлены со сколько-нибудь измеримой интенсивностью длины волн, заключенные в интервале, не превышающем нескольких тысячных ангстрема. Еще более монохроматично излучение оптических квантовых генераторов, но и здесь энергия сосредоточена в конечном, хотя и очень малом спектральном интервале (см. 228). В большинстве же случаев излучение атомов гораздо сильнее отличается от монохроматического и представляет собой набор излучений, длины волн которых варьируют в пределах нескольких сотых и. даже десятых ангстрема. При повышении давления пара линии излучения  [c.571]


В оптической области спектра эффект отдачи приводит к очень малому сдвигу линии. Тем не менее он может при определенных условиях проявляться в спектральных свойствах излучения оптических квантовых генераторов, и в 1975 г. эти проявления были обнаружены на опыте.  [c.659]

ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ  [c.769]

В начале 60-х годов были созданы источники света иного типа, получившие название оптических квантовых генераторов или лазеров. В противоположность некогерентным источникам, электромагнитные волны, зарождающиеся в различных частях оптического квантового генератора, удаленных друг от друга на макроскопические расстояния, оказываются когерентными между собой. В этом отношении квантовые генераторы вполне аналогичны источникам когерентных радиоволн.  [c.769]

Когерентность излучения проявляется практически во всех свойствах оптических квантовых генераторов. Исключение составляет, разумеется, полная энергия излучения, которая, как и в случае некогерентных источников, прежде всего зависит от подводимой энергии. Замечательной чертой лазеров, тесно связанной с когерентностью их излучения, является способность к концентрации энергии — концентрации во времени, в спектре, в пространстве, по направлениям распространения. Для некоторых квантовых генераторов характерна чрезвычайно высокая степень монохроматичности их излучения. В других лазерах испускаются очень короткие импульсы, продолжительностью 10 с поэтому мгновенная мощность такого излучения может быть очень большой. Световой пучок, выходящий из оптического квантового генератора, обладает высокой направленностью, которая во многих случаях определяется дифракционными явлениями. Такое излучение можно, как известно,  [c.769]

В данной главе излагаются основные сведения о физических принципах, лежащих в основе работы оптических квантовых генераторов, и о свойствах излучения последних.  [c.770]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ  [c.771]

В области индустрии отметим применения лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности. Очень интересны и важны применения лазеров в биологии, медицине, геодезии и картографии, в системах локации спутников и во многих других областях. Следует подчеркнуть, что постоянно расширяется сфера применений оптических квантовых генераторов.  [c.771]

Перечисленные примеры наглядно иллюстрируют установившееся мнение о подлинной революции в оптике и оптических методах исследования, произошедшей благодаря изобретению оптических квантовых генераторов.  [c.771]

Обратимся к противоположному предельному случаю полной когерентности волн, испускаемых различными атомами. Результат интерференции N волн существенно зависит от взаимного расположения излучающих атомов и от того конкретного закона, которому подчинены фазы еру. Рассмотрим простой случай, имеющий непосредственное отношение к свойствам оптических квантовых генераторов. Пусть источник имеет форму прямоугольного параллелепипеда (рис. 40.2) с длинами ребер а, Ь к L, светящиеся атомы заполняют его вполне равномерно, и амплитуды волн (точнее, коэффициенты Aj в выражении (222.1)) одинаковы. Пусть, далее, расстояние между соседними атомами значительно меньше длины волны, и поэтому суммирование по / в (222.2) можно заменить интегрированием по объему источника. Будем писать поэтому г х, у, г ) вместо Гу.  [c.772]

Итак, если излучение атомов, составляющих макроскопический источник света, когерентно и, кроме того, выполняется условие пространственной синфазности, то излучение источника в целом сосредоточено в малом дифракционном угле и амплитуда вблизи оси пучка в N раз больше амплитуды волны, испускаемой отдельным атомом. Отмеченные особенности характерны для оптических квантовых генераторов, т. е. рассмотренная схема представляет собой модель квантового генератора.  [c.774]

Описанное явление имеет принципиальное значение для оптических квантовых генераторов, и мы рассмотрим его подробнее. Пусть в среде создана инверсная заселенность уровней т, п. Ради упрощения формул статистические веса состояний т, п будем предполагать одинаковыми gm = gn) В противном случае разность Мт — Л я В последующих выражениях следует заменить на Nn/gn (см. (223.3)).  [c.777]


Вихревые трубы с щелевыми диффузорами, предназначенные для охлаждения объектов преимущественно осесимметричной конфигурации, помещенных в приосевую область труб такой конструкции, которые в больщинстве отечественных работ называют самовакуумирующимися [40, 112, 116]. Впервые это название ввел А.П. Меркулов [116]. Их используют, например, для охлаждения излучающего элемента (рубина) твердотельного оптического квантового генератора и зеркальца вихревого гифо-метра. В больщинстве случаев использование для охлаждения отдельных элементов устройств вихревых труб с щелевыми диффузорами позволяет существенно снизить габариты и массу системы охлаждения, заметно упростить конструкцию и повысить коэффициент теплоотдачи от охлаждаемого элемента, помещенного в приосевую зону камеры энергоразделения [21]. Опыты показывают, что эффективность теплосъема при переходе с обыч-  [c.295]

Схема оптического квантового генератора с вихревым охлаждением активного элемента — излучателя показана на рис. 6.10. Активный элемент I размещен в оправках на оси камеры энергоразделения 2, изготовленной из прозрачного материала — кварцевого стекла. Сжатый газ подается в полость камеры энер-горазделения через тангенциальное сопло в виде интенсивно закрученного потока. На удаленном от соплового ввода конце камеры энергоразделения установлен щелевой диффузор 3. Ось вихревой трубы совмещена с одной из фокальных осей эллиптического отражателя 4. В другой его фокальной плоскости под камерой энергоразделения 2 размешена лампа накачки 5. Эллиптический отражатель 4 имеет зеркальную внутреннюю поверхность. Регулирование интенсивности охлаждения излучателя осуществляется сменой работы вихревой трубы путем изменения щелевого зазора при перемещении подвижной щеки диффузора. Время выхода оптического генератора на установившийся режим определяется теплогенерационными свойствами охлаждаемого активного элемента-излучателя.  [c.296]

Наличие оптических квантовых генераторов, даже мощных, работающих на вполне определенных фиксированных частотах, число которых сравнительно невелико, не может удовлетворить все возрастающую в них потребность. Для целесообразного применения в разных областях науки и практики крайне необходимо создать лазеры, способные генерировать мощные когерентные излучения в широких пределах перестраиваемых частот. В этом заключалась одиа из важнейших задач лазерной физики. Поставлеппая задача нашла свое успешное решение в работах С. А. Ахманова, Р. В. Хохлова и независимо от них Н. Кролла в США, проведенных в 1962 г.  [c.407]

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора — оптического квантового генератора, или лааера.  [c.314]

Современный этап развития оптики, начало которого можно датировать 1960 г., характеризуется новыми, весьма своеобразными чертами. Фундаментальные свойства света — волновые, квантовые, его электромагнитная природа — находят все более разнообразные и глубокие подтверждения и применения, продолжая служить основой для понимания всей совокупности оптических явлений. Однако круг этих явлений неизмеримо расширился. В начале 60-х годов были созданы источники с высокой степенью монохроматичности и направленности излучаемого ими света — так называемые оптические квантовые генераторы или лазеры. Распространение лазерного излучения и его взаимодействие с веществом во многих случаях протекает в существенно иных условиях, чем в случае излучения обычных, нелазерных источников, и конкретные явления приобретают совершенно новые, неизвестные ранее черты. Сказанное относится к отражению, преломлению, дифракции, рассеянию, поглощению и к другим основным оптическим явлениям (см. ГЛ. ХЬ, ХЫ).  [c.25]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]


Смотреть страницы где упоминается термин Оптический квантовый генератор : [c.414]    [c.2]    [c.6]    [c.10]    [c.261]    [c.562]    [c.776]   
Теория сварочных процессов (1988) -- [ c.0 ]

Оптика (1976) -- [ c.0 ]

Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.255 ]



ПОИСК



Афокальные насадки к оптическим квантовым генераторам (ОКГ)

Генераторы квантовые

Задача 18. Оптический квантовый генератор на кристалле рубина

Задача 19. Оптический квантовый генератор на смеси гелия и неона

Конфигурация поля, создаваемого оптическими квантовыми генераторами

ЛАЗЕРЫ, НЕЛИНЕЙНАЯ ОПТИКА Оптические квантовые генераторы

Молодницкии, Н. П. Захаров. Уравновешивание с помощью оптического квантового генератора

Обработка излучением оптических квантовых генераторов j (лазеров)

Описание устройства и работы рубинового оптического квантового генератора

Оптические генераторы

Оптические телевизионные системы с оптическим квантовым генератором

Оптический квантовый генератор лазер)

Принцип действия оптического квантового генератора

Р а з д е л X. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ И НЕКОТОРЫЕ ВОПРОСЫ НЕЛИНЕЙНОЙ ОПТИКИ

Спектр излучения оптических квантовых генераторов

Суминов, А. К Скворчевский. Исследование точности уравновешивания роторов лучом оптического квантового генератора

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте