Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние. внутренних потерь а работу ГТУ

ВЛИЯНИЕ ВНУТРЕННИХ ПОТЕРЬ НА РАБОТУ ГТУ  [c.277]

Потери на трение в передаче с зубчатым ремнем разделяются на следующие внутренние потери в ремне от растяжения и изгиба и в зубьях от деформации при входе в зацепление с ведущим и выходе из зацепления с ведомым шкивами потери на скольжение зубьев ремня по зубьям шкивов при входе и выходе из зацепления на трение в подшипниках валов и аэродинамические. Рассмотрим указанные потери и выявим их влияние на КПД передачи [3]. Потери на трение в подшипниках валов и аэродинамические от движения ремня и шкивов рассмотрены в работе [34].  [c.134]


Вследствие высокой температуры перед турбиной ГТУ будет иметь высокий КПД, однако при этом нельзя выполнить газовую турбину без охлаждения. Применение внутреннего воздушного охлаждения приведет к дополнительным потерям работы, совершаемой газовой турбиной, и к снижению КПД ГТУ. Влияние охлаждения на характеристики ГТУ рассмотрено ниже (см. 12.10, 12.11).  [c.388]

Ограничимся рассмотрением одномерного стационарного течения идеально-газовой смеси, состоящей из М компонент, между которыми протекает R химических реакций. Предположим также, что в каждой точке канала внутренние степени свободы находятся в равновесии с поступательными. Будем пренебрегать эффектами теплопроводности и диффузии. Потери импульса, обусловленные влиянием вязкостных сил, будем учитывать заданием работы трения.  [c.124]

Для достижения малых значений коэффициентов расхода и толщины пленки топлива и больших значений углов факела следует выбирать внутренние геометрические размеры форсунки таким образом, чтобы можно было свести к минимуму влияние сил трения. Такие размеры имеет раскрытая форсунка, при работе которой потери на трение о торцовые и цилиндрические поверхности камеры резко уменьшаются, и при любом значении коэффициента трения эквивалентная действующая характеристика приближается к геометрической. Как видно из выражения (76), для раскрытых форсунок уменьшением сечения входных каналов можно достичь необходимых по величине характеристик  [c.86]

Разработкой и совершенствованием гидропередач заняты многие научно-исследовательские институты, конструкторские организации и заводы различных отраслей промышленности. Одним из основных этапов создания новых конструкций гидропередач является их исследование с целью определения рабочих характеристик изучения внутренних процессов и влияния их на потери мощности и силовой режим гидромашины выявления надежности и долговечности работы гидромашин изучения влияния изменения конструктивных элементов гидропередачи на ее внешнюю характеристику проверки существующих методов расчета и получение исходных данных для разработки новых методов расчета изучения динамических свойств гидропередачи и влияния их на  [c.3]

Существуют несколько источников загрязнений теплоносителя в пароводяных трактах ТЭС и АЭС примеси добавочной воды, вводимой в цикл для покрытия внутренних и внешних потерь пара и конденсата присосы в конденсат пара охлаждающей воды в конденсаторах или сетевой воды в теплообменниках примеси загрязненного конденсата, возвращаемого от внешних потребителей пара на ТЭЦ примеси, искусственно вводимые в пароводяной тракт для коррекции водного режима (фосфаты, гидразин, аммиак и другие разнообразные добавки) продукты коррозии конструкционных материалов, переходящие в теплоноситель. На АЭС примеси, кроме того, могут поступать в тракт в виде продуктов деления ядерного топлива через негерметичные участки тепловыделяющих элементов и образовываться в активной зоне реактора за счет процессов радиолиза воды, а также протекания радиационных превращений и радиационно-химических реакций. В зависимости от типа основного теплоэнергетического оборудования и условий работы вклад и влияние каждого из перечисленных источников (табл. В.1) в суммарное загрязнение водного теплоносителя ТЭС и АЭС могут значительно варьироваться.  [c.9]


Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]

Существенное влияние на работу каркаса оказывает толщина обрезиненного текстильного корда. Уменьшение толщины текстильного каркаса приводит к снижению потерь на внутреннее трение, а следовательно, уменьшению теплообразования, улучшению условий охлаждения, сокращению расхода резины, облегчению шины, большей равномерности работы и улучшает ряд других ее качеств. Прочность покрышки определяется в основном прочностью корда.  [c.87]

Результаты статистической обработки с применением автоматизированной базы данных позволили оценить влияние основных факторов на коррозионные процессы в ТП с применением факторного и регрессионного анализа. Матрица наблюдений, по которой построены модели прогноза образования числа дефектов, состоит из 11 параметров и включает характеристики дефектов и труб, а также режимы работы ТП. Особенность прогнозирования заключается в подготовке исходных данных для расчета, так как построение модели по существующей базе данных положительных результатов не дает. Матрица наблюдений сформирована после исследования и статистического анализа дефектов. За зависимый параметр принято количество дефектов типа потеря металла , так как они наиболее полно отражают процессы коррозии на внутренней поверхности ТП. На основе полученного регрессионного уравнения по данным первого прогона внутритрубной УЗД (рис. 3.14, кривая УЗД-90) построена 9 131  [c.131]

Число Re характеризует отношение сил инерции к силам Вязкости. При больших значениях Re влияние сил внутреннего трения на течение по сравнению с влиянием инерционных сил ослабляется. При Re > 10 образуется область автомодельности по числу Re и потери при течении жидкости практически не зависят от его значения. Лопаточные машины ЖРД, как правило, работают в этой области. В области автомодельности критерий Re можно исключить из числа определяюш,их критериев. Число М при одном и том же рабочем теле характеризует сжимаемость газа, т. е. отношение плотностей в сходственных точках.  [c.95]

Не менее существенно влияние на эффективность газотурбинных установок внутренних относительных к. п. д. турбины и компрессора. Как видно из рис. 208, при низкой экономичности машин, например = Лт == 0,75, даже при достаточно высоких температурах газа (0 = 4 ti = 20° С /з = 900° С) к. п. д. цикла не превышает 0,1 увеличение относительных к. п. д. турбомашин с 0,82—0,84 до 0,88—0,89, а именно это и произошло за последние годы, обеспечило прирост к. п. д. на 30—50%, что эквивалентно повышению температуры t на 150—180° С. Следует иметь в виду, что к. п. д. турбины ti т и компрессора tIk по-разному влияют на величину т]с. Особенно резко отражаются на общей экономичности потери в турбине, поскольку с ними связано большее слагаемое в алгебраической сумме, составляющей полезную работу.  [c.356]


Уравнение (10) позволяет подсчитать давление сжатого воздуха в пневморессоре в любой момент времени с учетом теплообмена. Причем для различных колебательных режимов работы подвески в уравнении (10) можно учесть влияние внутреннего теплообмена (внутренних необратимых потерь работы) отношением температур  [c.294]

Пример такого рода приведен в [105]. Другой пример продемонстрирован в [13], где показано, что под влиянием внутреннего трения вращающийся вал может потерять устойчивость. Ясно, что такой процесс сопровождается увеличением энергии ротора. По было бы ошибочным думать, что это происходит из-за положительной работы сил трения. Работа этих сил, разумеется, отрицательна. По именно они создают условия для перекачки энергии от привода к ротору. Наконец, известен пример, принадлежащий Капице [98]. Теоретически и экспериментально установлено, что в иодшиинике под влиянием вязкого трения ротор может потерять устойчивость и приобрести сложное движение в обойме. Принципиально отличным моментом для течения в канале является чисто гидродинамический аспект явления потери устойчивости вследствие действия диссипативного фактора.  [c.25]

Потеря работы при ремнях кожаных, плетеных, тканых, шнурах, цепных лентах и органических материалах для преодолевания внутреннего трения, возрастающего с увеличением предварительного натяжения и 8 Z) и появляющегося при набегании и сбегании ленты. Внутренний износ зависит при плетеных лентах и шнурах, главным образом, от степени скружки. И для них влияние небольших натяжных роликов неблагоприятно, благодаря перегибу ленты то в одну, то в другую сторону.  [c.592]

Если насадок устанавливается на перерасширенное сопло, то можно ожидать благоприятного влияния зазоров, поскольку через них внутрь насадка будет попадать атмосферный воздух (ра < ц )- что улучшит тепловой режим работы насадка за счет охлаждения его внутренней поверхности, несколько увеличит управляющее усилие и уменьшит потери тяги.  [c.326]

Рассмотрим теперь такой класс упругих материалов, для которых работа, произведенная над элементарным объемом в замкнутом цикле по деформациям иди напряжениям, равна нулю. В классической литературе именно это определение принималось за определение упругого материала в современных руководствах по отношению к ним применяется термин гиперунругие . Сохраняя обычную терминологию, мы сохраним название упругие тела для таких тел, к которым относится не только первое условие, сформулированное в начале, но также требование отсутствия немеханических потерь энергии или, наоборот, необходимости привлечения немеханической энергии извне при деформировании. В 7.4 было выписано выражение для вариации работы внутренних сил на возможных вариациях деформаций если вариации деформаций заменить их действительными приращениями, мы получим элементарную работу внутренних сил на единицу объема или изменение упругой энергии. Предположение о ги-нерупругости исключает влияние термических эффектов. Итак, изменение внутренней энергии равно  [c.237]

Нильсен и Ли [74] объясняли расхождение теоретических и экспериментальных результатов для тангенсов углов потерь гранулированных композитов наличием внутреннего трения между частицами в агломератах, между матрицей и включениями и трением между краями трещин внутри полимера. В этой же работе отмечено влияние внешней поверхности полимера на комплексные модули, определяемые из опытов на кручение и изгиб, и дан простой метод корректировки их значений.  [c.176]

Информация о влиянии объемной доли и размера частиц аг-фазы на чувствительность к КР ограничена. На основании имеющихся данных можно заключить, что чем ниже температура старения (которая увеличивает объемную долю аг), тем ниже величина Кгкр и тем выше скорость растрескивания под действием среды. Влияние продолжительности старения на КР представлено по данным [175] на рис. 66. Результаты, полученные на образцах с надрезом, а не с усталостной трещиной, показывают, что восстановление свойств КР происходит иногда после выдержки -500 ч при 675 °С. Это обусловлено потерей когерентности частиц г-фазы и тем самым релаксацией внутренней напряженности поля. Улучшение свойств может быть также связано с изменением взаимодействия дислокаций с частицами аг-фазы от срезания до огибания. Дальнейшая работа, очевидно, требуется для оценки влияния объемной доли, размера частицы, скопления частиц а фазы на чувствительность к КР сплавов системы Т — А1. Было показано, что мартенситные структуры в бинарных сплавах Т1 — А1 чувствительны к КР в водных растворах [31].  [c.358]

Второе достоинство показателя потерь от брака заключается в его тесной связи с важнейшими экономическими показателями работы предприятия и его внутренних подразделений себестоимостью, прибылью, рентабельностью, производительностью, фондоотдачей и др. Уменьшение производственного брака, а также общее снижение возникающих при этом потерь вызывают увеличение годной готовой продукции и улучшение отмеченных показателей, а следовательно, повышение эффективности производства. С другой стороны, он хорошо улавливат влияние многих факторов производства (степень совершенства и использование предметов труда, средств труда, уровень организации труда и производства, уровень технологии и т. п.).  [c.158]

В реальных регенеративных циклах с конечным числом отборов термодинамически наивыгоднейшая температура вторичного перегрева зависит, кроме параметров исходного цикла и конечной температуры вторичного перегрева, еще и от большого количества других факторов величины механических потерь в проточной части турбины, характера влияния влажности на внутренний относительный к. п. д., падения давления пара в тракте промежуточного перегрева и др. Весьма существенным является то обстоятельство, что отбор пара на вторичный перегрев соьмещается обычно с одним из регенеративных отборов. Температура пара, отбираемого на вторичный, перегрев, определяет (при данном режиме работы турбины) его давление. Последнее в свою очередь определяет температуру насыщения в совмещаемом отборе, т. е. органически связывает параметры схемы промежуточного перегрева и регенеративной схемы.  [c.28]


Замечено, что краевые усилия, действующие в зоне заделки днища на шпангоуте, могут привести к преждевременной местной потере устойчивости. В среднем в краевой зоне ki 2,2. Это, однако, не влияло на величину критического давления общей потери устойчивости (в том числе при расположении ребер на внутренней поверхности). По крайней мере, результаты проведенных испытаний не выявили это влияние. Если требуется сохранить геометрию днища в процессе его работы, при проектировании необходимо предусмотреть соответствующие конструктивные мероприятия, исключающие прохлопывание ячеек. Например, уменьшить в краевой зоне шаг ребер. Преждевременное местное про-  [c.122]

В большинстве случаев можно считать, что статическая прочность компенсаторов зависит, в основном, от внутреннего давления, а разрушение от усталости определяется переменными смещениями его концов, вызванными изменением температуры в процессе работы. Влияние давления на усталость при этом не существенно. В то же время в некоторых случаях доля деформаций от давления в местах максимальных деформаций сопоставима с долей дефорйаций -от смеще 1ий, и при переменном давлении нужно проводить расчет на усталость с учетом этого давления. Следует также иметь в виду, что несущая способность компенсаторов может определяться потерей устойчивости оболочки, но этот вопрос здесь не рассматривается.  [c.397]

Переходя к обзору результатов исследований поведения многосвязных оболочек, остановимся прежде всего на работах, посвященных изучению влияния трещин различного типа на напряженно-деформированное состояние цилиндрических труб. Димарогонас [78] рассмотрел задачу об устойчивости длинной трубы (кольца), находящейся под действием внешнего давления. Считалось, что труба имеет продольную щель с глубиной,, не пр-ёвышающей толщину стенки. В работе получено трансцендентное уравнение для критического давления, решение которого представлено в функции от глубины трещины. Автором получены также формы потери устойчивости трубы с внутренними и наружными трещинами. На основе проведенной работы делается вывод о том, что трещины приводят к значительному понижению устойчивости труб. Следует отметить, что сегодня весьма актуальной является пробл ема влияния трещин на динамические параметры элементов несущих конструкций. Исследованию такой задачи посвящена работа Дитриха [79]. В ней приведены результаты исследования изменения собственных частот и форм колебаний труб при появлении различных трещин в сварных щвах. Теоретический анализ выполнен с помощью метода конечных элементов. В работе приведены полученные с помощью ЭВМ графики изменения частот восьми низших тонов изгибных колебаний трубы в зависимости от длины трещины. Соответствующие этим частотам формы колебаний представ- лены в трехмерной форме.  [c.301]

Если оценивать проблему выбора и создания нового инструмента для сверления отверстий с точки зрения его конструкции, то в этом случае внутренний подвод СОС открывает широкое поле деятельности. Объясняется это тем, что при создании конструкции сверла с внутренним подводом С(ЭС могут не учитываться такие проблемы, как проблема пакетирования стружки, проблема потери режущих свойств режущими кромками в результате их макронагрева (нагрев микрозон на границе контакта стружки и передней грани инструмента при этом не устраняется). В специально разрабатываемых конструкциях инструмента с внутренним подводом СОС в наибольшей степени могут проявиться современные достижения в области расчета параметров инструмента, способного работать с максимальными подачами и производительностью труда, с наибольшей эффективностью. Эффективность инструмента с внутренним подводом СОС определяется способностью инструмента пропускать через его внутренние каналы достаточный объем СОС. С этой точки зрения сечение внутренних каналов необходимо максимально увеличивать. Вместе с этим увеличение сечения каналов неизбежно приведет к снижению прочности и жесткости сверла. Расчетами, проведенными на Сестрорецком инструментальном заводе им. Воскова и канд. техн. наук А. Л. Кирилленко, установлено, что каналы наиболее целесообразно размещать в перьях сверла, в районе центра вписанной в перо окружности, так как в этом случае они будут оказывать наименьшее влияние на его жесткость. При этом диаметр каналов не должен превышать половины диаметра окружности, вписанной в перо сверла. Форма каналов (круглая, овальная или в виде криволинейного треугольника) не оказывает существенного влияния на жесткость сверла, если площадь их сечения одинакова. Объем жидкости, пропускаемой в единицу времени, зависит от формы поперечного сечения каналов, влияющей на величину потери давления, причем наибольшая потеря давления имеет место в каналах треугольного сечения.  [c.224]

Влияние на детали низких температур. При низких температурах наблюдаются утечка воздуха из пневматических систем высокого давления из-за потери эластичности уплотнениями отказ в работе воздушных редукторов высокого давления по причине потери эластичности мембранами нарушение целостности и прозрачности слоя желатина на внутренних поверхностях стекол приборов (при минус 15—20°С) увеличение вязкости гидросмеси и вызываемое этим замедление и недостаточная четкость работы гидравлических приводов замерзание воды в воздушных трубопроводах и фильтрах воздушных систем высокого давления и в системах полного и статического давления примерзание по этой причине воздушных и топливных клапанов ухудшение герметизации кабин из-за замерзания уплотняюш,их резиновых шлангов примерзание выдыхательных клапанов в кислородных масках затвердевание виниловых оболочек жгутов и виниловой изоляции электропроводов замерзание аккумуляторов во время продолжительных полетов замерзание электромеханизмов, вращающих антенные устройства потеря упругости, возникновение хрупкости и ломкости дюри-товых шлангов, покрышек и камер колес, амортизационных шнуров образование трещин в резине нагруженных пневматиков увеличение вязкости смазок температурные деформации деталей и др.  [c.52]

Как и в работе [2], данными исследованиями экспериментальпо установлено отсутствие влияния на величину ету (как в технически гладких камерах, так и в камерах, имеющих шероховатые поверхности) относительной высоты входных шлицев, пережима выходного отверстия и распределения ввода газа по высоте камеры (рис. 5). Потери крутки на входе в камеру определяются в основном относительной площадью ввода потока в камеру (параметром А) и состоянием внутренней поверхности стенок. Опыты показали, что при одинаковых условиях входа увеличение степени шероховатости всегда приводит к заметному увеличению потерь момента количества движения 21а входе в камеру. В исследоваппом диапазоне изменения величин А и А зависимость коэф-  [c.295]

Т. е. тот полный приток тепловой вредности, к-рый в ур-ии (2) имел общее обозначение Ь. В фабрично-заводских помещениях, находящихся в работе, этот общий приток тепла м. б. определен более простым методом. Если помещение не имеет вентиляции, то темп-ра его повышается до тех пор, пока не установится равенство притоков и тепловых потерь наружных ограждений. Измеряя темп-ру помещений в разных пунктах по высоте его и находя среднюю внутреннюю температуру г , можно определить разность средней внутренней и наружной темп-р. Зная эту разность и размеры поверхностей охлаждения, мы узнаем общую сумм тепловых потерь помещения. При установившемся состоянии общая сумма тепловых потерь определяет общий приток тепла от всех имеющихся в помегцении источников. Измерения следует делать не в солнечный день, чтобы избежать влияния солнечной радиации. Если после этого сделать поправку на влияние естественной вентиляции, а также принять во внимание уменьшение тепловыделений при установившемся состоянии благодаря повышению внутренней темпе ,1атуры, то можно получить материалы, вполне достаточные для учета количества IV.  [c.89]


При очень длинных лопатках угол входа струи /3% значительно меняется от ножки к наружному концу лопатки. Чтобы при этом получить на всей длине лопатки вход пара по возможности без удара, выполняют лопатки с меняющимся входным углом, которые однако вследствие их высокой стоимости м. б. применены только в больших Т. При дисках с парциальным впуском пара в той части окружности, где впуск пара не производится, для уменьшения потерь на вентиляцию устраивается жолоб или кожух, охватывающий диск кольцевой покрышкой (фиг. 32, 34, 37). Сальники имеют своим назначением уменьшать утечку вследствие неплотностей. В местах прохода вала через кожух в зазор между неподвижными и врагдающимися частями протекает пар из камеры с более высоким давлением в камеру с более низким давлением, но производя при этом никакой работы. Это вызывает, с одной стороны, утечку пара, а, с другой стороны, потери вследствие торможения, т. к. этот пар должен получать ускорение от рабочего пара. Для возможного уменьшения этих потерь утечка д. б. сведена к минимуму путем устройства лабиринтовых уплотнений. Вследствие большой скорости соприкосновение между движущ,имися и неподвижными частями не должно иметь места поэтому для Т. неприменима набивка, употребляемая в поршневых машинах. Лабиринтовые уплотнения состоят из ряда чередующихся пространств переменного сечения. Они устанавливаются в передней и задней крышке, а также и в промежуточных диафрагмах, причем наружные уплотнения содержат большее число лабиринтовых камер, чем внутренние. Пар, проникший через наружное уплотнение части Т. высокого давления, м. б. подведен к наружному уплотнению на стороне низкого давления. В случае недостатка добавляется нек-рое количество свежего пара для избежания проникновения наружного воздуха в Т. и связанного с этим понижения вакуума. Наружные уплотнения выполняются ипогда с угольными кольцами (фиг. 33). Уплотнения этого рода дают удовлетворительные результаты, но требуют более тщательного ухода. Кроме того применяется водяное (гидравлическое) уплотнение, к-рое представляет полную непроницаемость, но требует на себя затраты известной мощности Т. Это уплотнение состоит из лопастного колеса, насаженного на вал и вращающегося в кольцевой выточке стенки кожуха. Вода под давлением подводится к центру колеса и под влиянием центробежной силы отбрасывается к окружности его, образуя кольцо, запирающее выход пара из Т. и доступ атмосферного воздуха извне.  [c.127]

Для оценки влияния на работу УКС акустических потерь и настройки преобразователей проведен анализ фор у1улы (5.45) с использованием ЭЦВЛ1. Изменение амплитудно-частотной характеристики УКС в зависимости от потерь на внутреннее трение определяли расчетом величины ср г ) прп различных добротностях преобразователей Ql и диска Q,. на резонансной частоте /ре.- =18 кГц.  [c.166]


Смотреть страницы где упоминается термин Влияние. внутренних потерь а работу ГТУ : [c.92]    [c.145]    [c.86]    [c.148]    [c.328]    [c.71]    [c.254]   
Смотреть главы в:

Основы гидравлики и теплотехники  -> Влияние. внутренних потерь а работу ГТУ



ПОИСК



Потери внутренние

Потери работы

Работа внутренних сил



© 2025 Mash-xxl.info Реклама на сайте