Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Необратимость внутренняя

В 1954 г. Н. И. Белоконь предложил второе начало классической термодинамики разделить на два независимых начала, отражающих, с одной стороны, принцип существования абсолютной температуры и энтропии (второе начало термостатики) и, с другой — принцип возрастания энтропии и необратимости внутреннего теплообмена (второе начало термодинамики).  [c.5]

Таким образом, установлено, что формулы (10.10) и (10.11) верны для случая обратимого адиабатического внешнего потока и любого необратимого внутреннего потока.  [c.135]


При нанесении смеси подложку размещают в сосуде с высокими (10— 12 см) стенками, что обеспечивает замедленную сушку из-за наличия над поверхностью покрытия паров растворителя. Замедленная сушка препятствует возникновению необратимых внутренних напряжений 8 покрытии, вызывающих раковины и утяжки на поверхности экрана. Внешний вид экрана контролируют визуально.  [c.175]

Основа термодинамики—два экспериментально установленных закона первый и второй законы, или начала термодинамики. Первое начало термодинамики — принцип сохранения и эквивалентности приращения энергии второе начало термодинамики — принцип возрастания энтропии изолированных систем и необратимости внутреннего теплообмена.  [c.6]

Наконец, учет потерь на жесткость гибкого тела от необратимого внутреннего трения его волокон при изгибе ветвей гибкого тела в процессе набегания и сбегания его со шкива, блока или барабана был дан в работах К. М. Масленникова и А. А. Вальтера.  [c.12]

Третий постулат термодинамики, являющийся основанием принципа возрастания энтропии изолированных систем и необратимости внутреннего теплообмена (второго начала термодинамики), должен содержать указание о наличии какого-либо явления, не допускающего, по второму постулату, прямого обращения например, для нашего мира, который в дальнейшем бу- дем называть системой с положительной абсолютной температурой, любая формулировка третьего постулата эквивалентна следующему утверждению Работа может быть непосредственно и полностью превращена в тепло путем трения или электронагрева .  [c.6]

Это значит, что изменения энтропии равновесных систем, обусловленные существованием внутреннего теплообмена dS = = 8Q /T), имеют неизменно положительный знак (принцип необратимости внутреннего теплообмена).  [c.71]

Сравниваем общее выражение второго начала термостатики (98) с математическим выражением принципа необратимости внутреннего теплообмена (105)  [c.71]

Третий постулат термодинамики, являющийся основанием второго начала термодинамики, устанавливает лишь факт существования одного какого-либо необратимого явления (трение, электронагрев, диффузия и т. п.), а второе начало термодинамики формулируется уже как общий принцип необратимости внутреннего теплообмена (105) или как принцип возрастания энтропии любых изолированных систем (106). Это значит, что содержание постулата (частное утверждение, как констатация результатов систематических наблюдений отдельных явлений) и математическое выражение второго начала термодинамики (общий принцип, характеризующий направление течения всех явлений в природе) не эквивалентны, а общепринятое отождествление формулировок второго начала термодинамики и его постулата должно быть признано ошибочным.  [c.72]


Так возникло толкование принципа возрастания энтропии изолированных систем как статистического закона энтропия изолированной системы возрастает (52>Si) при переходе этой системы от состояний менее вероятных к состояниям более вероятным (p2>pi), однако не исключается и возможность переходов изолированной системы от состояний более вероятных к состояниям менее вероятным (p2энтропии системы (52флуктуации плотности, температуры и т. п.). Принцип необратимости внутреннего теплообмена dS = являющийся развитием математического  [c.72]

Сравниваем определение абсолютной температуры (следствие IV второго начала термостатики) и выражение принципа необратимости внутреннего теплообмена (105)  [c.73]

Постулат и математическое выражение второго начала термостатики симметричны относительно знака абсолютной температуры (плюс или минус), что в сочетании с принципом необратимости внутреннего теплообмена как фундаментальным законом изменения состояния любых термодинамических систем (второе начало термодинамики) приводит к следующим выводам система А  [c.73]

Допустим, что имеется неравновесная замкнутая система, состоящая из источника работы и среды. Независимо от того, являются ли протекающие процессы обратимыми или необратимыми, внутренняя энергия источника работы изменяется от начального значения U до значения равновесного со средой состояния Uq.  [c.158]

Второе исходное уравнение для описания необратимых процессов—уравнение баланса энтропии. Если разделить изменение энтропии системы dS на две части — первую d S, представляющую собой вклад окружающей среды, или, что то же самое, поток энтропии извне вследствие взаимодействия системы с внешней средой, и вторую d S, составляющую производство энтропии внутри системы, обусловленное необратимостью внутренних процессов, то  [c.45]

В руководствах по классической гидромеханике уравнение Бернулли часто выводится на основе одного лишь принципа сохранения энергии но методике, которая будет обсуждена в следующем разделе. В таком подходе имеется логическая ошибка в то время как динамическое уравнение не используется вовсе, уравнение Бернулли получается при помощи двух основополагающих предположений одно из них сформулировано уравнением (1.-9.1), а другое, дополнительное состоит в том, что механическая энергия не превращается необратимо во внутреннюю энергию, что означает отсутствие диссипации энергии.  [c.48]

Второй член в левой части представляет собой приращение энтропии среды, окружающей рассматриваемый элемент объема, на единицу массы последнего. Таким образом, левая часть описывает полное приращение энтропии, а т Vy представляет собой диссипацию энергии, т. е. скорость ее необратимого превращения во внутреннюю энергию.  [c.52]

Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом). В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появившиеся взамен деформированных, имеют примерно одинаковые размеры по всем направлениям.  [c.56]

Величина необратимых электродных потенциалов металлов определяется как внутренними, связанными с металлом, так и внешними, связанными с электролитом и физическими условиями, факторами.  [c.178]

Из описания работы процесса реального двигателя внутреннего сгорания с быстрым сгоранием топлива при постоянном объеме видно, что он не является замкнутым. В нем имеются все признаки необратимых процессов трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен при конечной разности температур и т. п.  [c.262]


Потери от необратимого расширения пара в двигателе учитываются внутренним относительным к. п. д. турбины  [c.301]

При исследовании физических основ явления трения различают трение внешнее и внутреннее. Внешнее трение — сопротивление относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей по касательным к ним и сопровождаемое диссипацией энергии. Внутреннее трение — процессы, происходящие в твердых, жидких и газообразных телах при их деформации и приводящие к необратимому рассеянию механической энергии.  [c.225]

При конечной же скорости переноса процесс идет необратимо чтобы заставить заряды двигаться обратно, их нужно сначала остановить. При этом конечной,будет и скорость изменения концентрации ионов в электролите. Поэтому их равновесное распределение по обе стороны полупроницаемой перегородки не будет успевать, как следует, устанавливаться и определяемая этим распределением разность потенциалов будет уменьшаться. Она будет становиться меньше, чем величина ЭДС. Такой же механизм уменьшения напряжения при конечной величине отбираемого тока действует во всех химических источниках тока, и его обычно учитывают, вводя представление о внутреннем сопротивлении источника.  [c.112]

Замечательно, что формула (7.18) остается при этом в прежнем виде, но под изменениями энтропии следует уже понимать общие изменения, вызванные не только обменом энергией и веществом между системой и внешней средой (d5 ), но и внутренними необратимыми процессами в системе (dS "), т. е.  [c.70]

Мы переходим теперь к изучению влияния, которое оказывают на движение жидкости происходящие при движении процессы диссипации энергии. Эти процессы являются выражением всегда имеющей место в топ или иной степени термодинамической необратимости движения, связанной с наличием внутреннего трения (вязкости) и теплопроводности.  [c.71]

В конце 2 было указано, что полная система гидродинамических уравнений должна содержать пять уравнений. Для жидкости, в которой имеют место процессы теплопроводности и внутреннего трения, одним из этих уравнений является по-прежнему уравнение непрерывности уравнения Эйлера заменяются уравнениями Навье — Стокса. Что же касается пятого уравнения, то для идеальной жидкости им является уравнение сохранения энтропии (2,6). В вязкой жидкости это уравнение, разумеется, не имеет места, поскольку в ней происходят необратимые процессы диссипации энергии.  [c.270]

При анализе циклов теплоэнергетических установок весьма удобно различать два вида необратимости процессов необратимость внешнюю и необратимость внутреннюю. Такого рода классификация процессов позволяет правильно устанавливать источники энергетичеоких потерь в циклах и дает возможность искать пути для их устранения.  [c.15]

Это значит, что изменение энтропии любой термодинамической системы — равновесной (Ti = Tj) и неравновесной (ТгФТ ), изолированной (6Q =0) и неизолированной (6Q 0) всегда определяется как алгебраическая сумма двух слагаемых первое слагаемое — изменение энтропии, обусловленное существованием внешнего теплообмена (dS ) и второе слагаемое — изменение энтропии, обусловленное существованием внутреннего теплообмена (dS 0). Первое слагаемое может иметь любой знак, а второе имеет неизменно положительный знак при всяком изменении состояния системы. Отсюда принцип возрастания энтропии изолированных систем, как следствие принципа необратимости внутреннего теплообмена  [c.71]

Итак, приходим к выводу, что возрастание энтропии изолированных систем обусловлено необратимостью внутреннего теплЬ-обмена, а математическое выражение принципа возрастания энтропии изолированных систем (106) является всего лишь следствием второго начала термостатики (98) и принципа необратимости внутреннего теплообмена (105, 107 а).  [c.72]

Для валов выбирают материал большой динамической прочности, который обладает высоким пределом выносливости по отношению к кручению и изгибу. Фёппль указывает на зависимость предела выносливости от способности материала к так называемому затуханию колебаний. Способность материала к затуханию определяется отношением количества необратимой внутренней энергии (пропорциональной площади петли гистерезиса) ко всему количеству упругой энергии в единице объема данного материала. Поэтому пригодным материалом для устройства валов и вообще колеблющихся систем будет тот, который имеет большой коэфициент затухания в известных границах изменения рабочих напряжений. Ниже в табл. 33. на стр. 242, даны пределы выносливости некоторых материалов. Запасы прочности для валов быстроходных двигателей и турбин выбираются по отношению к пределу выносливости в границах от 1,35 до 2.  [c.185]

Таким образом, хотя в рассмотренном примере вообще нет притока внешнего тепла к системе I + П, энтропия этой системы возрастает за счет необратимого внутреннего процесса. Количественная формули- ыше, ИСХОДЯ из цикла Карно, энтропия ровка второго закона тер- как функция состояния была ввбдена толь-модинамики применительно ко для двухпараметрических сред. По-к многопараметрической смотрим теперь, как можно ввести энт-  [c.238]

Важным свойством упругой муфты является ее демпфирующая способность, которая характеризуется энергией, необратимо поглощаемой муфтой за один цикл (рис. 17.10) нагрузка (OAI) и разгрузка (1ВС). Kai известно, эта энергия измеряется площадью петли гистерезиса OAW . Энергия в муфтах расходуется на внутреннее и внеи)-нее трение при деформировании упругих элементов.  [c.307]

Пример 18-4. Определить термический к. п. д. идеального цикла ГТУ, [)аботающей с иодиодом теплоты п Л1 р onst, а также тер-МИЧССКП11 к. п. д. действительного цикла, т. е. с учетом необратимости процессов расширения и сжатия в турбине и компрессоре, если внутренние относительные к. п. д. турбины и компрессора равны 1]турб == 0,88 и tIkom = 0,85, Для этой установки известно, что Л =-= 20° С, степень повышения давления в компрессоре Р =6 температура газов перед соплами турбины ts = 900° С. Рабочее тело обладает свойствами воздуха, теплоемкость его постоянна, показатель адиабаты принять равным /г -= 1,41.  [c.295]


Часто внутренее тепловыделение отсутствует и на установившемся режиме теплосъем будет определяться лишь величиной необратимых потерь за счет неадиабатности камеры холода и магистралей подвода и отвода охлажденного газа Q = Q . По известному значению потребной холодопроизводительности и выбранному значению изобарного подогрева охлажденных масс газа, считая изобарную теплоемкость известной, по уравнению теплового баланса определяют потребный расход охлажценного потока  [c.228]

Физическая природа возникновения АЭ в материале при его пластическом деформировании и разрушении, очевидно, связана с микропроцессами необратимого деформирования и разрушения материалов. Приложенная нагрузка приводит к возникновению в материале конструкции полей напряжений и деформаций, за счет энергии которых зарождаются и развиваются дефекты, приводящие в конечном итоге к разупрочнению материала. Зарождение, перемещение, рост дефек1 ов, а также их исчезновение сопровождаются изменением напря-женно-деформированного состояния и перестроением микроструктуры материала. При этом в материале перераспределяется внутренняя энергия, что приводит к возникновению АЭ. В металлах возникновение АЭ связано с образованием и движение дислокаций, зарождением и развитием трещин, с фазе-  [c.255]

При рассмотрении вопросов статики твердого тела и при силовом расчете механизмов оперируют с внешними силами, действующими на тело. В телах действуют также внутренние силы, с которыми частицы тела действуют друг на друга. Эти силы являются взаимоуравновешивающими и в уравнения статики не входят. При расчетах на ирочеюсть необходимо выяснить характер и значения внутренних сил в теле (детали), fIaxoдящeм я под действием внешних нагрузок, так как именно от них зави-висит свойство материалов, изделий а конструкций сопротивляться разрушению, а таклсе необратимому изменению первоначальной формы и размеров, т. е. прочность детали.  [c.116]

Энтропия - термодинамическая неизмеряемая функция состояния системы, определенная вторым началом термодинамики. Является мерой разу-порядоченности внутренней структуры. Важным разделом линейной термодинамики необратимых процессов является вычисление скорости возрастания энтропии. Системы, находящиеся в состоянии, далеком от термодинамического равновесия, в процессе структурной самоорганизации подчиняются принципу минимума производства энтропии (см. Принцип минимума производства энтропии).  [c.157]


Смотреть страницы где упоминается термин Необратимость внутренняя : [c.92]    [c.264]    [c.264]    [c.264]    [c.140]    [c.5]    [c.107]    [c.204]    [c.19]    [c.45]    [c.207]    [c.71]    [c.107]    [c.373]    [c.71]   
Техническая термодинамика и теплопередача (1986) -- [ c.47 ]

Теплотехника (1986) -- [ c.72 ]



ПОИСК



Внутренняя и внешняя необратимость

Необратимость

Необратимость цикла внутренняя

Соотношения термодинамики необратимых процессов неизотермического деформирования материала с внутренними параметрами состояния Кувыркин)

Третья теорема о потерянной работе — потеря получаемой (или избыток затрачиваемой) внутренней работы вследствие необратимости процесса перехода между заданными бесконечно близкими состояниями

Факторы, влияющие на внутреннюю необратимость циклов

Четвертая теорема о потерянной работе — связь между потерями полной и внутренней получаемых (или избытками затрачиваемых) работ вследствие необратимости бесконечно малых процессов



© 2025 Mash-xxl.info Реклама на сайте