Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Утечки воздуха

Из-за наличия мертвого (вредного) пространства, потерь давления, утечек воздуха, а также запаздывания и сопротивления распределителя индикаторная диаграмма реального пневмодвигателя значительно отличается от теоретической.  [c.261]

В пневматических установках с переменным давлением при поступлении воды в бак воздух сжимается до максимального давления. При расходе воды из бака давление в нем падает до минимального расчетного. Компрессор работает только на пополнение утечек воздуха, в этих установках наблюдается большое колебание напора, н насосы большую часть времени работают вне оптимальной области.  [c.217]


Задача 2.91. Определить мощность электродвигателя для привода вентилятора котельного агрегата, работающего на буром угле состава С = 41,6% Н = 2,8% Sp = 0,2% N = 0,7% 0 =11,7% =10,0% Pf = 33,0%, если коэффициент запаса подачи 1 = 1,1, расчетный расход топлива Вр-2,1 кг/с, коэффициент избытка воздуха в топке а = 1,25, присос воздуха в топочной камере Дат = 0,06, утечка воздуха в воздухоподогревателе До в = 0,04, температура холодного воздуха, поступающего в вентилятор, ,в = 20°С, расчетный полный напор вентилятора Я,=  [c.88]

Выше была рассмотрена работа идеального одноступенчатого поршневого компрессора. В действительности надо считаться с тем, что конструктивно компрессор приходится осуществлять так, чтобы поршень не доходил до конца крайнего торца цилиндра, где размещают крышку со впускным и выпускным клапанами. Объем между торцом крышки цилиндра и крайним положением поршня называют вредным пространством. Его наличие, а также влияние работы клапанов, сопротивления при всасывании и выталкивании и утечки воздуха влияют на работу и производительность компрессора и заставляют вносить коррективы в выведенные выше формулы.  [c.81]

В табл. 4 приведены величины эквивалентных утечек воздуха при различных давлениях.  [c.60]

Утечки воздуха, эквивалентные чувствительности гидростатического метода  [c.61]

Эквивалентная утечка воздуха, Ю— -------, при давлении, 10 Пэ  [c.61]

К третьей обойме со стороны выхода привинчивают сварнолитой диффузор. В паз корпуса диффузора устанавливают обойму уплотнения с тремя подвижными кольцами, сводящими к минимуму утечки воздуха из компрессора (за одиннадцатую ступень) в турбину. В паз обоймы уплотнения со стороны камеры сгорания устанавливают защитный тепловой экран ротора ТВД.  [c.33]

Технические осмотры на отсутствие утечек в воздуховодах, газоходах и регенераторах промышленных площадок и лестниц на отсутствие посторонних предметов газопроводов пускового и импульсного газа, топливопроводов и установленной на них арматуры и кранов на отсутствие утечек трубопроводов высокого давления, а также циркуляционных и сетевых водоводов на отсутствие утечек воздуха, газа и течи воды.  [c.94]

Сварные трубопроводы. Легкость утечки водорода [2] обусловлена его специфическими физическими свойствами малыми вязкостью и молекулярной массой. Утечка жидкого водорода происходит в 50 раз быстрее воды. Течение водорода в газообразном состоянии в четыре раза превосходит утечку воздуха. Поэтому GA подчеркивает необходимость использования сварных трубопроводов, тщательного монтажа и испытания системы.  [c.399]


Пневматическое управление тормозами в подъемнотранспортных машинах имеет относительно малое распространение из-за громоздкости и сложности агрегатов питания, включающих в себя компрессор с двигателем, ресивер, аппараты очистки воздуха. Однако применение воздуха вместо жидкости создает более благоприятные условия для работы конструкции, так как утечка воздуха через неплотности соединения в трубопроводах и цилиндрах при пневматическом управлении приводит к незначительному понижению мощности пневматических аккумуляторов и не имеет такого значения, как утечка жидкости в гидравлических системах управления. Применение пневмоуправления весьма целесообразно для тормозов, развивающих большие тормозные моменты, для управления которыми усилия рабочего оказывается недостаточно.  [c.148]

Утечка воздуха через клапан сброса воздуха в атмосферу прп давлении  [c.431]

Утечки воздуха (УВ) через полностью закрытый дроссель при давлении  [c.433]

Распределители должны быть герметичными при давлении до 10 кгс/см . Не допускаются наружные утечки воздуха по стыкам и через тело корпуса и крышек.  [c.436]

Ряд отраслей современного машиностроения требует контроля герметичности отдельных деталей и собранных узлов. Этот контроль производится в тех случаях, когда агрегат в процессе его работы должен быть предохранен от утечек воздуха, масла, воды и т. д. Литье детали необходимо проверять на отсутствие сквозных раковин и пористости стенок, сварные резервуары — на плотность сварочных швов, собранные узлы и агрегаты — на плотность прокладок и соединений или качество притирки клапанов и золотников. В некоторых случаях контроль прочности деталей производится при помош,и жидкости, подаваемой во внутреннюю плоскость под высоким давлением. Примером подобного контроля является гидравлическое испытание труб для выявления прочности сварных швов.  [c.302]

Простейшим способом проверки плотности сварных швов или стыковых мест сборки является проверка при помощи мыльной пены. Для этого в контролируемый резервуар подается под некоторым давлением сжатый воздух. С наружной стороны сварные швы или стыки кистью покрываются мыльной пеной. В местах, где вследствие пористости шва или некачественной сварки проходит воздух на мыльной пене образуются пузыри. Преимущество подобного метода в его простоте и высокой чувствительности. Однако применение этого метода для проверки отливок невозможно, так как необходимо знать заранее угрожаемые места. В отливках заранее неизвестно, где может обнаружиться пористость или раковина, вызывающая утечку воздуха.  [c.303]

В пневматических системах процесс работы воздуха протекает сложно. Здесь существенное влияние оказывает теплообмен, изменяющиеся во время работы системы утечки воздуха, включение и выключение различных емкостей и т. д. Все эти обстоятельства приводят к изменению давления, температуры и вязкости воздуха, что, в свою очередь, меняет режим работы устройства. Однако эти изменения не должны в недопустимой мере отражаться на качестве работы пневматической системы. Для устранения вредного влияния перечисленных явлений и поддержания заданного режима работы в пневматических системах применяются регулирующие устройства.  [c.170]

Воздух проходит по кольцевой канавке, и при наличии просвета по окружности кольца расход его резко увеличивается. Это позволяет отбраковать кольца, имеющие повыщенный просвет. Однако, чтобы исключить утечку воздуха через тепловой зазор в стыке проверяемого кольца, в кольцевой канавке сделана перемычка на длине дуги 16 мм (8 + 2X4=16 мм, см. сечение АА).  [c.272]

В механизмах современных автоматических линий применяют как пневмо-, так и гидроприводы. Пневмопривод работает от цеховой сети сжатого воздуха при давлении 0,6—0,7 МПа. Он проще в обслуживании, чем гидравлический, мало подвержен влиянию пыли, имеет только трубопроводы для подвода воздуха утечка воздуха через различные неплотности не считается аварией. Однако силовые механизмы из-за сравнительно низкого давления получаются громоздкими, что относится в первую очередь к прессовым механизмам. Скорость движения механизмов регулируется плохо и поэтому приходится устанавливать различные гидравлические тормозные устройства. Линии с гидроприводом могут успешно эксплуатироваться в литейных цехах. Этому способствует и общее повышение уровня обслуживания, без чего вообще невозможна эксплуатация современных автоматических линий. Надежность работы гидропривода увеличивается при применении некоторых дополнительных мер использовании специальной гидроаппаратуры, установки гидростанций в закрытых помещениях, в которых вентилятор создает незначительное избыточное давление воздуха. По-видимому, на линиях целесообразно использовать одновременно оба привода для создания больших усилий — гидропривод, в остальных случаях — пневмопривод.  [c.220]


Защитные сальники подвергаются проверке на герметичность во время приемочных испытаний арматуры. По данным некоторых фирм, утечка воздуха через сальник при испытании его рабочим давлением 16 кгс/см и температурой 20° С не должна превышать ШОО см /сут (0,7 см /мин).  [c.13]

При подъеме давления воздуха в воздухосборнике P I выще допустимой величины, срабагываег предохранительный клапан KHI. При этом часть воздуха из воздухосборника выпускается в атмосферу. благодаря чему давление в воздухосборнике гюнижается до допустимой Bejnmnnbi. Обратный клапан KOI предотвращает утечку воздуха из воздухосборника в случае прекращения рабо/ы компрессора КМ1.  [c.277]

Прибор для определения технического состояния цнлиндропоршневой К-69 М СССР Степень износа цилиндропоршневой группы по утечке воздуха  [c.89]

На рис. 8.13 представлена принципиальная схема каскада высокого давления ГТД с организацией в подкамерном пространстве закрученного течения охладителя. Под камерой сгорания / расположен цилиндрический либо конический корпус вихревого энергоразделителя 2, куда из полости течения вторичного воздуха 3 камеры сгорания / подается часть вторичного воздуха. На охлаждение турбины, как следует из схемы течения, подаются закрученные приосевые массы газа, охлажденные в камере энергоразделения. Избыточное по сравнению с охлажденным потоком давление подогретого потока воздуха срабатывается в процессе охлаждения задней полости сопловой лопатки. Неизбежные утечки воздуха через осевой зазор за последним рабочим колесом турбины при их подкрутке в направлении вращения ротора используются на организацию дополнительного потока, вдуваемого в приосевую зону.  [c.383]

Задача 2.88. Определить расчетную подачу вентилятора котельного агрегата паропроизводительностью 1)=13,8 кг/с, работающего на природном газе с низщей теплотой сгорания 2,= = 35 700 кДж/м , если давление перегретого пара />пи = 4 МПа, температура перегретого пара /пд = 430°С, температура питательной воды /пв=130°С, кпд котлоагрегата (брутто) = теоретически необходимый объем воздуха F° = 9,48 м /м , коэффициент запаса подачи / i=l,05, коэффициент избытка воздуха в топке От =1,15, присос воздуха в топочной камере А(Хт = 0,05, утечка воздуха в воздухоподогревателе Да зд-—0,04, температура холодного воздуха, поступающего в вентилятор, /хв = 20°С и барометрическое давление воздуха /2g = 98 10 Па.  [c.87]

Задача 2.92. Определить мощность электродвигателя для привода вентилятора котельного агрегата паропроизводитель-ностью D= 13,9 кг/с, работающего на подмосковном угле с низшей теплотой сгорания 2 =10 636 кДж/кг, если температура топлива на входе в топку 1. = 20°С, теплоемкость рабочей массы топлива с = 2,1 кДж/(кгК), давление перегретого пара /)пи = 4 МПа, температура перегретого пара fnn = 450° , температура питательной воды пв=150°С, кпд котлоагрегата (брутто) fj p=86%, теоретически необходимый объем воздуха V° — = 2,98 м /кг, коэффициент запаса подачи i=l,05, коэффициент избытка воздуха в топке t =l,25, присос воздуха в топочной камере Aotr = 0,05, утечка воздуха в воздухоподогревателе Да,п = 0,04, температура холодного воздуха, поступающего в вентилятор, j, = 25° , расчетный полный напор вентилятора Н = = 1,95 кПа, коэффициент запаса мощности электродвигателя 2=1,1, эксплуатационный кпд вентилятора rjl = 6lVa, барометрическое давление воздуха Лб = 98 10 Па и потери теплоты от механической неполнотьь сгорания топлива 94 = 4%.  [c.89]

Задача 2.93. Определить расчетный полный напор вентилятора котельного агрегата, работающего на фрезерном торфе состава С = 24,7% Н = 2,6% N =1,1% 0 =15,2% = 6,3% И = 50,0%, если расчетный расход топлива Вр = = 4,6 кг/с, коэффициент запаса подачи =1,05, коэффициент избытка воздуха в топке t,= l,25, присос воздуха в топочной камере Аа = 0,05, утечка воздуха в воздухоподогревателе Аавп = = 0,045, температура холодного воздуха, поступающего в вентилятор, 1в = 20°С, мощность электродвигателя для привода вентилятора JV = 60 кВт, коэффициент запаса мощности электродвигателя 2=1Д, эксплуатационный кпд вентилятора э = 60% и барометрическое давление воздуха Лб = 97 10 Па.  [c.89]

Задача 2.94. Определить расчетный полньш напор вентилятора котельного агрегата, работающего на буром угле с низшей теплотой сгорания Q =15 800 кДж/кг, если коэффициент запаса подачи 1 = 1,05, условный расход топлива Ву=1,45 кг/с, коэффициент избытка воздуха в топке 0 = 1,25, присос воздуха в топочной камере А(Хт = 0,05, теоретически необходимый объем воздуха V° = 4 м /кг, утечка воздуха в воздухоподогревателе Аа,п = = 0,04, температура холодного воздуха, поступающего в венку  [c.89]

Замкнутые циклы на органическом топливе. Замкнутыми ГТУ называются такие установки, в которых рабочее тело непрерывно циркулирует в замкнутом KOHTypii, не обновляясь. Теплота к рабочему телу подводится через стенки нагревателя, в топке которого сжигается топливо. На рис. 6.11 показана схема замкнутой ГТУ с промежуточным охлаждением и регенерацией. Цикл подобной установки принципиально не отличается от цикла открытой ГТУ, лишь отвод теплоты осуществляется в предвключенном охладителе ХП, а не за счет замены уходящих газов холодным воздухом, поступающим в компрессор. Особенностью цикла является повышенное давление рабочего тела (обычно воздуха) перед КНД. Пополнение утечек воздуха осуществляется с помощью баллонов Б, куда он поступает от небольшого вспомогательного компрессора  [c.201]


Для проведения атмосферных испытаний на герметичность изделий, в которые может быть подано электроотрицательное пробное вещество, предназначен течеискатель 13ТЭ-9-001. Действие его основано на уменьшении электропроводности разрядного промежутка при попадании в него электроотрицательного пробного вещества вследствие значительно более интенсивной рекомбинации положительных ионов с медленными отрицательными ионами, чем с быстрыми электронами. С помощью такого течеискателя, в случае размещения проверяемого изделия в среде электроположительного газа (например, азота, аргона), может быть также зафиксирована утечка воздуха, в состав которого входит электроотрицательный газ — кислород [0].  [c.195]

На лопасти указанного вертолета при наработке 781 ч был заменен 4-й отсек представителем вертолетного завода по дефекту "трещина обшивки . После работы вертолета почти год после замены отсека была выполнена проверка герметичности лонжерона, которая не выявила наличия в нем трещины. После этого была выполнена еще одна, проверка на срабатывание сигнализации повреждения лонжерона при общей наработке 1553 ч. Она также не показала отклонений в работе сигнализатора. Срабатывание сигнализатора было зафиксировано после дальнейшей эксплуатации вертолета в течение еще 83 ч (160 полетов). Место нарупте- ния герметичности лонжерона было обнаружено I после снятия лопасти с вертолета и ее дефектации с помощью мыльного раствора. Утечка воздуха происходила в нижней части лонжерона по месту крепления 4-го отсека. Итак, лопасть была снята  [c.643]

Внутренний и наружный цилиндры, образующие опору, в дополнение к учитываемому при проектировании комбинированному воздействию двухосного изгиба и кручения, должны также выдерживать внутреннее гидравлическое давление от масляного амортизатора, поглощающего энергию удара. Два обстоятельства вызывали беспокойство при проектировании этого узла из К0Д1П03ИЦИ0НН0Г0 материала возможность износа подшипника вследствие поршневого действия цилиндра и возможность утечки воздуха или гидросмеси через стенки цилиндра из  [c.168]

Для обоснования метода расчета длительной малоцикловой прочности компенсаторов выполнена программа исследований, включающая экспериментальное получение данных по долговечности сильфонных компенсаторов Z) -40 из нержавеющей аустенитной стали Х18Н10Т со следующими параметрами (рис. 4.3.1) dg = А см = 5,4 см = 0,129 R2 = 0,121 см Iq = 6,1 см п =11. Испытания выполнены с использованием специально спроектированной установки, позволяющей осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения — сжатия с заданными размаха-ми перемещений. Нагрев компенсаторов — печной, частота нагружений 10—56 циклов в минуту при постоянной температуре 600 С. Компенсаторы находились под давлением 1 атм, причем момент разрушения от циклического нагружения автоматически фиксировался по падению давления в результате утечки воздуха через образовавшуюся сквозную трепщну. Малый уровень давления практически не влиял на деформированное состояние конструкции и ее долговечность.  [c.203]

Направляющие лопатки компрессора с нулевой по одиннадцатую ступень — постоянного профиля. Они имеют цилиндрический хвостовик с резьбой и узкую полочку в форме параллелограмма, которая является переходом от профильной части к резьбовому хвостовику. Каждую лопатку после установки в паз сегмента и обойму закрепляют при помощи колпачковой гайки, предотвращающей утечки воздуха по резьбе. После первой и второй обойм часть воздуха через противопомпажные клапаны сбрасывается в атмосферу при запуске ГТУ, а часть отбирается на уплотнения турбин и другие технологические цели.  [c.34]

Корпус подшипника двумя горизонтальными практически не охлаждаемыми лапами опирается на выступы внутренней поверхности корпуса турбины. Наружная поверхность лап покрыта тепловой изоляцией, прикрытой тонкостенными обтекателями. Верхняя вертикальная стойка специально охлаждается и служит только для обеспечения симметричности течения в переходном патрубке. Нижнюю используют для подвода уплотняющего воздуха и масла, а также слива масла из подшипника и его суфлирования. Благодаря этому давление подшипника близко к атмосферному. Воздух, подаваемый на уплотнение среднего подшипника, отбирает-св за шестой ступенью компрессора и охлаждается до температуры 323 К. Этот воздух трубопроводом, расположенным в нижней стойке, подается в камеру уплотнения лабиринта ТВД, откуда через сверления перепускается в камеру уплотнения лабиринта ТНД. Из обеих камер имеются утечки воздуха в приторцевые полости роторов турбины. Оставшаяся часть воздуха поступает в полость подшипника и через специальный трубопровод в нижней стойке сбрасывается в маслобак.  [c.59]

Утечка воздуха через закрытый клапан в диапааопе давлений от 1 до  [c.428]

В конце ресурса падение давления, вызываемое утечками воздуха, не должно превышать 50% сверх установлеииой в п. 2 нормы.  [c.464]

Утечки воздуха через тела крышек н гпльзы но резьбам п стыкам детмри це допускаются.  [c.468]

Проблема обеспечения полной герметизации пневмогидравли-ческйх систем — одна из главных в их создании. Практика показывает, что нарушение герметичности является первой причиной неполадок в работе пневмогидравлических и гидравлических систем. Особенно это относится к системам, предназначенным для работы в условиях высоких температур и давлений рабочей среды. Поэтому основные требования к изготовлению уплотнений вытекают из их назначения препятствовать утечке воздуха или жидкости, находящихся под некоторым избыточным давлением, через зазор в стыке двух неподвижных или перемещаюш,ихся относительно друг друга жестких поверхностей деталей арматуры. Это достигается созданием нулевого или малого зазоров между уплотнительными поверхностями.  [c.65]

Герметичность всей системы проверяют после ее монтажа на машину и обычно совмещают с испытанием машины. При эгом течь масла, во,цы и других жидкостей выявляется осмотром г иногда по падению давления в системе. Утечку воздуха или других газов выявляют на слух (по шипению) или мыльной водой и по снижению давления в системе, а иногда и вследствие отказа в работе отдельных механизмов машины.  [c.615]

Компенсаторы и металлорукава испытывали при избыточном внутреннем давлении 0,1 МПа момент разрушения фиксировался автоматически по падению давлетя в результате утечки воздуха через образовавшуюся трещину. Принятое давление практически не влияло на де-  [c.166]

По характеру изменения параметров элемента или системы различают внезапные и постепенные отказы. Внезапные отказы вызываются обычно причинами, которые не носят монотонного характера и действие которых проявляется внезапно во всем объеме (например, попадание стружки в патрон, которое препятствует загрузке заготовки появление деталей с большими припусками или заусенцами, приводящее к застреванию их в лотках, поломке инструментов и т. д.). Внезапные отказы характерны для элементов радиоаппаратуры и систем управления электронных ламп, полупроводников, резисторов, конденсаторов, особенно работающих в условиях ударов, ви браций, высоких температур. Постепенные отказы, как правило, являются следствием монотонных необратимых процессов, таких как износ, разрегулирование механизмов, старение материалов. Так, например, постепенное изнашивание уплотнений пневмоцилиндров фиксаторов, особенно при загрязнении штоков, приводит к утечке воздуха и падению давления в цилиндрах. Износ направляющих скалки питателя автооператора приводит к тому, что радиальное положение захвата автооператора с заготовкой в крайнем переднем положении становится все более неопределенным, заготовка не попадает в патрон шпинделя и блокирующее устройство выключает автооператор. Внезапные отказы большей частью являются следствием накопления необратимых 5зменений, которые до некоторого  [c.68]



Смотреть страницы где упоминается термин Утечки воздуха : [c.327]    [c.86]    [c.87]    [c.87]    [c.205]    [c.431]    [c.436]    [c.392]    [c.100]    [c.248]   
Эксплуатация, наладка и испытание теплотехнического оборудования (1984) -- [ c.180 ]

Пневматические приводы (1969) -- [ c.101 , c.103 ]

Расчет пневмоприводов (1975) -- [ c.71 , c.72 , c.73 ]



ПОИСК



Ток утечки

Устранение утечек воздуха из тормозной сети поезда

Утечка сжатого воздуха

Утечки воздуха в атмосферу

Утечки воздуха в полость более низкого давления

Утечки воздуха в приводах

Утечки воздуха внешние

Утечки воздуха внутренние

Экспериментальное исследование привода с внутренними утечками воздуха



© 2025 Mash-xxl.info Реклама на сайте