Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Границы большеугловые

Другой тип границ — большеугловые границы, типичен для зерен с большими углами разориентировки (рис. 2.4). Такие границы характеризуются относительно  [c.40]

Зерна разделяют так называемые большеугловые границы а соседствующие зерна, не сильно отличающиеся ориентацией в пространстве, разделяются малоугловыми границами, в этом случае зерна характеризуются стремлением к объединению, слиянию.  [c.33]

Образование границ зерен — структурное превращение, присущее литому металлу (сварному шву, отливке) в период завершения его кристаллизации из жидкого расплава. Границы образуются непосредственно при срастании первичных кристаллитов. Поскольку кристаллические решетки кристаллитов ориентированы произвольно, то их сопряжение при срастании кристаллитов сопровождается существенными искажениями решеток. Эти искажения и приводят к образованию граничной поверхности. Существует также мнение, что границы образуются путем собирания дислокаций, неупорядоченно расположенных в металле после затвердевания в одну граничную поверхность в результате процесса полигонизации, однако более обоснован первый механизм образования границ. Современные представления о строении границ сводятся к тому, что на границах чередуются участки хорошего и плохого соответствия кристаллических решеток соседних зерен. Это так называемые островные модели границ зерен. Строение и протяженность участков плохого соответствия зависят от угла разориентировки решеток смежных кристаллитов. Различают малоугловые (угол до 15°) и большеугловые (угол свыше 15°) границы. Малоугловые границы описывают как ряд отдельных дислокаций (рис. 13.9,а). Расстояние между ними D определяется соотношением  [c.501]


Гиббса энергия 267—269, 271—273, 276, 281, 293 Гинье — Престона закон 498 Гомогенизация 507, 515 Границы большеугловые 501, 505  [c.552]

Гиббса энергия 114 Гинье-Престона зоны 160 Гистерезис 68, 354, 401, 527 Гомогенизация 154, 156 Границы большеугловые 35  [c.632]

К началу цикла нагружения материал в области предразрушения перед фронтом треш,ины находится в предельном структурном состоянии, которое создается предшествуюш,ей многократной интенсивной пластической деформацией. Такому состоянию соответствует идеальная (свободная от решеточных дислокаций) двухуровневая слоистая субмикрокристаллическая структура, слои которой, состояш,ие из равноосных бездефектных фрагментов, разделяются протяженными ножевыми границами (большеугловыми границами разориентации деформационного происхождения), расположенными вдоль оси х максимальной главной деформации у вершины треш,ины параллельно ее фронту. Ножевые границы являются внутренними концентраторами напряжений, причем максимумы напряжений располагаются вблизи от ножевых границ в теле фрагментов (такое распределение деформаций вблизи границ зерен деформационного происхождения установлено в [30]). Этот предварительно напряженный материал подвергается в цикле нагружения прираш,ению напряжений вплоть до появления очага хрупкого разрушения. В качестве математической модели такого материала (в интервале времени от начала цикла нагружения до зарождения первичного разрушения) рассмотрим однородную и изотропную по упругим свойствам среду со стационарными полями внутренних напряжений вдоль ножевых границ.  [c.51]

Как видно из рис. 36, до температуры 11. р сохраняется деформированное зерно. При температуре /[,. р в деформированном металле растут зародыши (рис. 36) новых зерен с неискаженной решеткой, отделенные от остальной части матрицы границами с большими углами разориентировки (большеугловыми границами) Новые зерна, вероятно, возникают в участках с повышенной плотностью дислокаций, где сосредоточены наибольшие искажения решетки, т, е. у границ деформированных зерен или плоскостей сдвига внутри зерен затем они растут в результате перехода к ним атомов от деформированных участков.  [c.55]

В основе механизма роста зерен лежит миграция болыиеугловых границ. Таким образом, рост зерна контролируется диффузионным переходом атомов через большеугловую границу.  [c.156]

Рис. 13.9. Дислокационные модели границ зерен а — малоугловая б — большеугловая в — специальная Рис. 13.9. <a href="/info/535374">Дислокационные модели</a> границ зерен а — малоугловая б — большеугловая в — специальная

Большеугловая граница рассматривается как область скоплений дислокаций, а сопряжение узлов достигается в результате значительных локальных искажений решетки. При произвольном угле разориентации отсутствует какая-либо периодичность в расположении узлов совмещения и искажения решетки, и это распространяется на приграничную зону относительно большой ширины (примерно до 100 параметров решетки) (рис. 13.9,6). При нескольких определенных углах разориентации, характерных для каждого типа решетки, образуются так называемые специальные границы. Они имеют определенную периодичность совмещенных узлов и практически идеальное сопряжение решеток (рис. 13.9,в). При этом толщина приграничного слоя с искаженной решеткой составляет всего 2...3 параметра решетки. Искажения решетки на границе и в приграничных зонах приводят к повышению на этом участке металла потенциальной энергии. Эта энергия равна 1,0...10 Дж/м и сильно зависит от состава и разориентации соседних зерен.  [c.502]

Близость энергии активации миграции к энергии активации самодиффузионных процессов свидетельствует о том, что миграция границ контролируется направленным перемещением вакансий. Другими словами, движение границы представляет процесс обмена местами атомов и вакансий (рис. 13.13). По своему атомному механизму и энергии активации миграция занимает некоторое промежуточное положение между самодиффузией по границам и объему зерен. В случаях малоугловых и специальных большеугловых границ обмен местами атомов и вакансий происходит в малоискаженных приграничных зонах, поэтому энергия активации миграции границы будет близка к энергии активации объемной самодиффузии в решетке. По мере разориентации границы и увеличения степени искажения решеток в приграничных зонах доля энергии активации, связанная с образованием и перемещением вакансий, будет уменьшаться. Общая энергия активации миграции будет приближаться к энергии активации самодиффузии по границам. В соответствии с этим большеугловые границы более подвижны, чем малоугловые и специальные. В условиях неравномерного распределения температуры, например при сварке, отмечают, что наиболее интенсивная миграция границ происходит в направлении тепловых потоков. Это, вероятно, обусловлено направленным потоком вакансий от более нагретого к менее нагретому участку металла.  [c.505]

Различают большеугловые и малоугловые границы субзерен, характеризующиеся углом разориентации 0 двух соседних зерен (субзерен). В дислокационной мо- 1ели границ с малым углом разориентации (рис. 21) тредполагается, что два субзерна с простой кубической зешеткой слегка повернуты один относительно другого 5 плоскости хоу вокруг оси 2 на равные и противополож-1ые углы 9/2. Угол разориентации составляет 0 = = 2 ar tg(6/2ft) или Граница состоит из ряда  [c.39]

Для малоугловых границ с увеличением угла 0 плотность дислокаций растет и при 6я 15° дислокации отделены промежутком порядка двух параметров решетки. При 6>15° граница становится большеугловой, а отделяемые ею области — зернами.  [c.42]

Дальнейшим развитием теории строения границ зерен является установление факта суш,ествования на границах зерен, включая н большеугловые, зернограничных дислокаций (рис. 96, в). В этом случае граница зерна состоит из участков мест совпадения и зернограничных дислокаций (ЗГД). Зернограничные дислокации могут быть подвижными и сидячими. Подвижные ЗГД могут перемещаться вдоль границы и играют важную роль в зернограничном проскальзывании. Скорость такого проскальзывания увеличивается с ростом плотности ЗГД. Наличие ЗГД подтверждается электронномикроскопическими исследованиями границ специально выращенных бикристаллов.  [c.166]

Наиболее ранняя дислокационная теория строения границ зерен может быть использована также для объяснения особенностей деформации поликристаллов. В частности, модель границы зерна Мотта предусматривает, что в границах с большими углами разориентации дислокации располагаются так близко, что их индивидуальные особенности стираются и дислокации уже нельзя рассматривать как самостоятельные дефекты. Поэтому островная модель большеугловой (0>1О-=-15°) границы Мотта предполагает, что границы зерен состоят из островков хорошего соответствия, разделенных областями с сильно нарушенной структурой.  [c.166]


Сегрегация примесей на границах (рис. 97, s) различна для мало- и большеугловых границ, свидетельствуя о различии в структурах этих границ. Повышенная сегрегация для большеугловых границ связана с обра-  [c.167]

Границы с малыми углами 0 менее подвижны, чем с большими. Скорость проскальзывания по границе с большим углом примерно в 10 раз больше, чем с малым углом. Большеугловые границы более подвижны в связи с тем, что содержат повышенную концентрацию вакансий. Подвижность границ с большими углами демонстрируется хорошо известным фактором при рекристаллизации быстрее всех растут зерна, повернутые на значительные углы. Например, для г. ц. к. металлов при повороте на угол 30—40° вокруг оси [111] по отношению к своим соседям наблюдается отличие текстуры рекристаллизации от текстуры деформации. Согласно теории большеугловых границ Мотта межзеренное проскальзывание, т. е. относительное движение двух кристаллических поверхностей, происходит тогда, когда появляется разупрочненное состояние ( оплавление ) атомов вокруг каждого из островков хорошего соответствия. Свободная энергия F, необходимая для процесса разупрочнения, уменьшается с повышением температуры и в точке плавления будет равна нулю, а при абсолютном нуле будет равна пЬ, где L — латентная теплота плавления на атом, а п — величина, характеризующая структуру границы и соответствующую числу атомов в островке хорошего соответствия. Согласно этой гипотезе предлагается следующий вид функции F T)  [c.171]

Эшби показал, что для сложных границ скольжение по границе и миграция тесно связаны. В этом случае скольжение и миграция границы пропорциональны, поскольку только в этом случае возможно скольжение без изменения структуры границы. При зернограничном проскальзывании по большеугловой границе миграция выступает как процесс, обеспечивающий непрерывное под-страивание границы до плоскости в атомном масштабе благодаря перемещению зернограничных дислокаций. Однако эту миграцию следует отличать от той, которая происходит в процессе пластической аккомодации, когда миграция, наблюдаемая при локальной пластической деформации, непосредственно не связана со скольжением по границе зерна. Такая нерегулярная миграция может препятствовать зернограничному проскальзыванию, поскольку не позволяет границе в процессе скольжения оставаться плоской. Для осуществления непрерывного скольжения по поверхности границы зерна необходимо действие источников зернограничных дислокаций. Предполагается, что источниками таких дислокаций могут быть источники типа Франка — Рида, действующие на границе зерна. Обнаруженные спиральные образования на границе зерен являются источниками дислокаций границ зерен, размножение которых происходит не скольжением, а переползанием. Дислокации границ зерен могут образовываться и в результате взаимодействия дислокаций решетки со структурными дефектами границы.  [c.178]

Если углы разориентировки (Лф) от субзерна к субзерну закономерно нарастают (рис. 179), то при росте субзерен миграцией границ их разориеитировка относительно матрицы, за счет которой происходит рост, будет возрастать и в момент превращения границы в большеугловую субзерно превращается в зародыш истинной первичной рекристаллизации.  [c.309]

Если алгебраическая сумма углов ра1зориентировки между субзернами на значительных расстояниях близка к нулю, то субзерна в процессе роста миграцией границ приобретают значительные размеры (несколько микрон) без заметного увеличения своей разориентировки относительно окружающей матрицы. Такой случай назван рекристаллизацией на месте ( in situ ). Этот термин не совсем удачен, так как к рекристаллизации относят процессы, связанные с большеугловыми границами (см. ниже). Правильнее называть этот процесс собирательной полигонизацией.  [c.309]

Сущность первичной рекристаллизации заключается в том, что в деформированной матрице при нагреве формируются и растут участки с неискаженной или значительно менее искаженной, чем у матрицы, решеткой, отделенные от матрицы границами с большими углами разориентировки — так называемые центры (зародыши) рекристаллизации. Рост этих центров за счет матрицы реализуется миграцией их большеугловых границ.  [c.311]

В наиболее общем виде дислокационные представления сводятся к тому, что образование зародышей рекристаллизации связано с перегруппировкой дислокаций, приводящей к предрекристаллизационной полигонизации. При этом образуются субзерна — неискаженные или мало искаженные области решетки, повернутые друг относительно друга на некоторые углы, в начале, как правило, небольшие, т. е. отделенные малоугловыми границами. В силу неизбежной неоднородности деформированной структуры всегда имеются области (субзерна), большие по размерам, чем окружающие, и более сильно разори-ентированные. Такие субзерна растут интенсивнее, чем другие, их малоугловые границы поглощают при своем движении новые дислокации и в результате превращаются в большеугловые высокоподвижные границы, что и характеризует окончание формирования центра (зародыша) рекристаллизации.  [c.315]

Увеличение угла разориентировки границы сопровождается увеличением ее энергии до тех пор, пока граница не превращается в большеугловую. Понятие о критичес-  [c.315]

Рис. 182. Рекристаллизация в электролитическом железе образованием выступов на большеугловой границе, стимулированная разной плотностью дислокаций по обе стороны от границы Рис. 182. Рекристаллизация в <a href="/info/33515">электролитическом железе</a> образованием выступов на большеугловой границе, стимулированная <a href="/info/668436">разной</a> <a href="/info/14105">плотностью дислокаций</a> по обе стороны от границы

КОМ радиусе зародыша в случае рекристаллизации нетривиально. Критический радиус зародыша первичной рекристаллизации представляет собой локальный радиус кривизны, изменяющийся от точки к точке. Для того чтобы зародыш мог расти за счет деформированной матрицы, он не должен быть отделен от нее со всех сторон большеугловыми границами. Если отдельный небольшой участок зародыша рекристаллизации даже очень малых размеров суш,ественно отличается по ориентировке от окружаюш,ей деформированной матрицы, то радиус кривизны данного участка окажется больше критического, ибо рост зародыша на этом участке не вызывает увеличения зернограничной энергии.  [c.316]

При относительно небольших степенях деформации, когда ячеистая структура еще четко не сформирована, плотность дислокаций по обе стороны исходных границ соседних зерен часто оказывается существенно различной. Это объясняется неоднородным характером деформации различно ориентированных зерен поликристалла. В таком случае при нагреве некоторые из исходных зерен могут расти за счет соседних миграцией локальных участков своих большеугловых границ. В результате на мигрирующей границе образуются выступы или языки . Типичные примеры показаны на рис. 182. Движущей силой такого процесса является локальная разность объемных энергий (плотности дислокаций) по обе стороны от мигрирующего участка границы, созданная неоднородностью деформации. Граница (ее локальный участок) мигрирует в область соседнего зерна с более высокой плотностью дислокаций. Мигрирующий участок границы как бы выметает дефекты из пройденного ею участка (на рис. 182 области с разной плотностью дислокаций легко отличить по разной травимости).  [c.317]

Второй этап — рост субзерен и увеличение углов ра-зориентировки относительно окружающей матрицы до формирования большеугловых границ. Момент превращения границ в большеугловые означает завершение формирования центра рекристаллизации.  [c.318]

Третий этап — быстрая миграция большеугловых высокоподвижных границ в деформированную матрицу.  [c.318]

Рост зародышей первичной рекристаллизации, отделенных от матрицы высокоугловыми границами, как и рост зерен на стадиях собирательной и вторичной рекристаллизации, может осуществляться только миграцией своих границ. Коалесценция зерен, отделенных друг от друга обычными большеугловыми границами, невозможна. В особых случаях процесс роста зерен может происходить за счет образования и роста двойников отжига, но и в этом случае такой рост осуществляется миграцией некогерентных границ двойников.  [c.322]

Такой механизм образования зародышей рекристаллизации на исходных границах зерен приводит к локальной миграции отдельных участков большеугловой границы, т. е. к образованию выступов ( языков ). В результате граница исходных зерен принимает зубчатую форму (рис. 202).  [c.369]

Движущей силой образования выступов (зубчатости) является разница в локальной плотности дефектов по обе стороны от данного участка границы. Эта разница может быть вызвана непосредственно неоднородными условиями деформации в граничащих зернах. Возможен и другой механизм, непосредственно наблюдавшийся на алюминии. Заключается он в том, что по одну сторону границы происходит коалесценция одного или нескольких субзерен с полным или, вероятнее, частичным исчезновением разделяющих их границ. В результате по эту сторону границы возникают субзерна, значительно превосходящие по размерам субзерпа, расположенные по другую сторону большеугловой границы. В сильно деформированном, текстурованном материале рассмотрен-ный ранее механизм чаще реализуется у границ зерен,  [c.369]

Скольжение дислокаций участвует лишь в самой на чальной стадии формирования зародышей. Дальнейшие стадии процесса связаны с переползанием дислокаций с движением большеугловых границ, с коллективным атомными перемещениями и диффузией одиночных ато мов, абсолютной и относительной разницей в объемной зернограничной и поверхностной энергии границ sepei разных текстурных компонент, с тормозящей ролью ча стид дисперсных фаз.  [c.404]

К непроницаемым барьерам относятся большеугловые границы случайной ориентировки, малопластич-ные частицы других фаз, некогерентные матрице, барь-  [c.531]

В зависимости от того, будет ли распад происходить с выделением частиц некогерентных или когерентных матрице или вообще ограничится предраспадными образованиями внутри твердого раствора, продукты распада будут выделяться на большеугловых границах, на субграницах или отдельных дислокациях и соответственно тормозить их перераспределение и миграцию. Это и будет приводить к стабилизации структуры, а значит и облегчать ВТМО. Эффект стабилизации будет сохраняться до начала обратного растворения или коагуляции выделившихся частиц.  [c.544]

Особенностью двухфазных сплавов является то, что наряду с малоугловыми и большеугловыми границами зерен в пределах данной фазы в них имеются и границы между разными фазами — так называемые межфазные границы, которые являются барьерами для роста зерен в пределах данной фазы за счет друг друга, т. е. тормозят рекристаллизацию.  [c.560]

Примеси сегрегируют к границам зерен даже при наличии в количествах, значительно меньших, чем их растворимость в твердом состоянии. Так, добавка одного атома золота или серебра на 10 атомов свинца заметно повышает мнкротвердость большеугловых границ последнего аналогичное влияние оказывают добавки олова и цинка. При повышении температуры разность твердостей границ и тела зерен уменьшается и при 130 °С равна нулю. Микротвердость границ и тела зерен высокочистого свинца одинакова и равна 51 при —196 °С, 39 при 270 °С и 22 МПа при 150 °С.  [c.59]

Ли [54, 102], используя другую модель — модель зернограничных источников, попытался объяснить уравнение Холла — Петча путем рассмотрения начального этапа пластической деформации, т. е. объяснить начальную плотность подвижных дислокаций и ее связь с размером зерна. Исходя из того что скопления дислокаций редко наблюдаются (хотя специально оговаривалось, что это не является достаточным доказательством их отсутствия). Ли [54, 102] выдвигает альтернативный вариант объяснения, согласно которому начало пластической деформации в поликристалле связывается с эмиссией дислокаций выступами на большеугловых границах зерен. Из модели такой границы было рассчитано напряжение, необходимое для отрыва абсорбированной границей дислокаций и эмиссии ее в зерно. Это напряжение оказалось примерно одного порядка с напряжением предела текучести, следовательно, рассматриваемый процесс возможен без больших концентраций напряжения, т. е. без плоских скоплений дислокаций.  [c.51]

При больших деформациях, когда динамический возврат протекает наиболее полно, наблюдается рост совершенства и разориентации субграниц. К такому же результату приводит и статический (термический) возврат холоднодеформируемого металла. Несмотря на то что образующиеся дислокационные субграницы отличаются от большеугловых границ зерен меньшими углами разориентации [9, 275], их поведение приближается к поведению границ зерен, что экспериментально подтверждается выполнением зависимости Холла — Петча для субзерна [9, 306—310]  [c.131]

Характеризовать эволюцию системы между двумя точками бифуркации без учета возрастающей роли обязательно возникающего нового альтернативного механизма поглощения энергии невозможно в полной мере. Если, например, рассматривать изменение ячеистой дислокационной структуры без з ета механизмов создания большеугловых границ, то возникает неопределенность в последующей эволюции системы при переходе через критическую точку. Необходимо вводить в рассмотрение параметры, соответствующие нарастанию новых альтернативных механизмов поглощения энергии в открытой системе. Применительно к процессу распространения усталостной трещины нарушение принципа однозначного соответствия происходит при переходе от одной фор-  [c.124]



Смотреть страницы где упоминается термин Границы большеугловые : [c.52]    [c.57]    [c.39]    [c.164]    [c.299]    [c.302]    [c.312]    [c.319]    [c.335]    [c.361]    [c.129]    [c.8]   
Теория сварочных процессов (1988) -- [ c.501 , c.505 ]



ПОИСК



Границы зерен большеугловые кручения

Границы зерен большеугловые наклонные

Границы зерна большеугловые



© 2025 Mash-xxl.info Реклама на сайте