Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродные покрытия

Поры в сварных швах образуются в процессе кристаллизации сварного шва в результате выделения газов из пересыщенного газами затвердевающего металла. Причины появления пор насыщение жидкого металла сварочной ванны газами вследствие повышенной влажности электродных покрытий, флюсов, защитных газов (водородом), нарушения защиты (азотом) и интенсивных окислительных процессов в шве (оксидом углерода) охлаждение сварных швов при кристаллизации с большой скоростью, вследствие чего затрудняется выход пузырьков газа из кристаллизующегося шва в атмосферу.  [c.232]


ИОНИЗИРУЮЩЕЕ ДЕЙСТВИЕ МАТЕРИАЛОВ ЭЛЕКТРОДНЫХ ПОКРЫТИЙ,  [c.4]

Введение в состав электродных покрытий и флюсов влементов с низким потенциалом ионизации способствует быстрому зажиганию и устойчивому горению сварочной дуги за счет снижения эффективного потенциала ионизации газовой смеси.  [c.5]

Электродные твердые сплавы широко применяются в настоящее время. При их использовании легирование металла наплавки может производиться за счет стержня или,наполнителя, за счет толстого покрытия или комбинированным способом — за счет стержня и электродного покрытия.  [c.89]

В состав электродных покрытий для дегазации ванны хлором в значительных количествах входят хлористые соединения. Хлор, диссоциируя, образует атомы, которые активно вступают в реакцию с алюминием и водородом,  [c.102]

Характеристика электродного покрытия  [c.144]

Характеристика электродного покрытия  [c.166]

Взаимодействие металла с газами. При дуговой сварке газовая фаза зоны дуги, контактирующая с расплавленным металлом, состоит из смеси N4, О2, На, СОа, СО, паров НаО, а также продуктов их диссоциации и паров металла и шлака. Азот попадает в зону сварки главным образом из воздуха. Источниками кислорода и водорода являются воздух, сварочные материалы (электродные покрытия, флюсы, защитные газы и т. п.), а также окислы, пов рх-ностная влага и другие загрязнения на поверхности основного и присадочного металла. Наконец, кислород, водород и азот могут содержаться в избыточном количестве в переплавляемом металле. В зоне высоких температур происходит распад молекул газа на атомы (диссоциация). Молекулярный кислород, азот-и водород распадаются и переходят в атомарное состояние 0а5 20, Ыа 2 2Н, Н2 2Н. Активность газов в атомарном состоянии резко повышается.  [c.26]

Взаимодействие металла со шлаком. При расплавлении сварочного флюса, электродного покрытия, сердечника порошковой проволоки образуется шлак. Основное назначение сварочного шлака — изоляция расплавленного металла от воздуха. Флюсы и покрытия стабилизируют дугу, способствуют качественному формированию шва, осуществляют металлургическую обработку расплавленного металла — его раскисление и легирование.  [c.27]

Высокой химической активностью при сварке отличаются и другие цветные металлы алюминий, магний, медь, никель и сплавы на их основе. Качество их защиты обеспечивается инертными газами, а также специальными электродными покрытиями и флюсами.  [c.40]

В сварочной металлургии особая роль принадлежит электролитам типа ионных растворов, которые образуются при плавлении флюсов, электродных покрытий и порошковых проволок и активно взаимодействуют с металлами. Остальные виды электролитов используются при подготовке металлов под сварку для травления или участвуют в процессах электрохимической коррозии сварных соединений.  [c.288]


Сварка металлов плавлением представляет собой высокотемпературный быстропротекающий процесс, сопровождающийся химическими реакциями между металлом и средой (атмосфера дугового промежутка, шлаки, полученные плавлением флюсов или электродных покрытий), а также диффузионными процессами, особенно интенсивно развивающимися при высоких температурах (например, диффузионное соединение металлов в вакууме, предложенное Н. Ф. Казаковым).  [c.295]

Распределение марганца между шлаком и металлом. Марганец входит в состав большинства флюсов для сварки сталей в виде МпО, а в электродные покрытия — в виде руды МпОа. Его переход из шлака в металл необходим для раскисления металла и подавления вредного влияния серы (см. с. 402). Марганец вводят в сварочные материалы в виде пиролюзита — марганцовой руды (иногда сильно загрязненной фосфорными соединениями).  [c.362]

Применение основных электродных покрытий и сварочных флюсов позволяет понизить содержание фосфора в металле шва. Особенно это заметно при электрошлаковом переплаве сталей.  [c.367]

Свойства металла шва, наплавленного электродом без покрытия, очень низки (ударная вязкость падает до 0,5 МДж/м вместо 8 МДж/м ). Состав покрытия электродов определяется рядом функций, которые он должен выполнять защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СОг). оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СОг служит газовой защитой.  [c.390]

В зависимости от вида компонентов, которыми осуществляется защита зоны сварки от атмосферы, все электродные покрытия можно разбить на следующие четыре группы (ГОСТ 9467—75)  [c.393]

Важный показатель качества металла сварных швов — содержание газов и неметаллических включений, влияющих на прочностные свойства сварных соединений. В табл. 10.5 представлены данные сравнительной оценки рассмотренных групп электродных покрытий по содержанию в металле шва газов и шлаковых включений.  [c.396]

HF, H l). Рекомендуется также проводить тщательную подготовку кромок под сварку, удаляя частично гидратированные оксидные пленки на металле, уменьшать содержание водяных паров в атмосфере дуги путем высушивания защитных газов (СО2, Аг), прокаливать электродные покрытия и сварочные флюсы перед сваркой.  [c.405]

Получить в наплавленном металле и металле шва серый чугун можно, применяя специальные сварочные материалы, которые обеспечивают легирование через электродное покрытие. Примером таких м.1те1)иалов могут служить электроды, стержень которых изготовлен из низкоуглеродистой проволоки, например, марок Св-08 нлы Св-08Л по ГОСТ 2246—70, а в легирующем покрытии содержится достаточное количество элементов графитизаторов — угле )ода и кремния. Наиболее характерны электроды марки ЭМЧС, стержень которых состоит из низкоуглеродистой электродной проволоки, а покрытие из трех слоев  [c.332]

Об ионизирующем действии материалов электродных покрытий и флюсов можно судить по обрывной длине дуги.  [c.5]

Изучить ионизирующее действие материалов электродных покрытий, электродов разных марок и флюсов по обрывной длине дуги.  [c.6]

На величину и t , на потери от угара и разбрызгивание влияют количество тех или иных примесей в элек- тродном металле и электродном покрытии, а также температура стержня электрода.  [c.25]

Сварка чугуна стальными электродами с карбидообразующими элементами в покрытии приводит к тому, что С, поступающий в шов из основного металла, связывается в труднорастворимые мелкодисперсные карбиды (обычно ванадия), содержащиеся в электродном покрытии, и структура шва получается ферритиой с включениями мелкодисперсных карбидов. Так, электроды марки ЦЧ-4, в покрытие которых вводится 70% феррованадия, обеспечивают наплавленный металл с содержанием V 9—10%. При сварке чугуна электродами из малоуглеродистой  [c.95]


На стабильность горения дуги влияет плотность тока. Чем больше плотность тока, тем стабильнее горение дуги, так как термоэлектронная эмиссия более интенсивна. На устойчивость горетя дуги под водой оказывает влияние и чехольчик , который образуется на конце электрода в результате некоторого запаздывания плавления электродного покрытия по сравнению с плавлением стержня, так как он способствует сохранению газовой полости, в которой горит дуга.  [c.126]

Высокие температуры, используемые при сварке плавлением, с одной стороны, понижают термодинамическую устойчивость оксидов, как это было показано в п. 9.2, но, с другой стороны, скорость их образования резко увеличивается и за очень небольшое время сварочного цикла металлы поглощают значительное количество кислорода. Поглощенный кислород может находиться в металле или в растворенном состоянии в виде оксидов (обычно низшей степени окисления), или субоксидов (TieO, TisO, Ti20), а также может создавать неметаллические включения эндогенного типа, образовавшиеся при раскислении металла более активными элементами. И то, и другое резко снижает качество сварных соединений, особенно пластичность металла шва. Исследования этого вопроса показали, что основная масса кислорода в металле обычно находится в неметаллических включениях [20]. Источниками кислорода в металле при сварке служат окислительно-восстановительные реакции между металлом и атмосферой сварочной дуги, металлом и шлаками, образующимися в результате плавления флюсов или при разложении и плавлении компонентов электродного покрытия, а также при взаимодействии с наполнителями порошковой проволоки.  [c.317]

Распределение кремния между шлаком и металлом. Кремний, входящий в состав флюсов и электродных покрытий в виде кремнезема S1O2, в составе шлака образует комплексные ионы, строение которых зависит, как это указывалось ранее, от количества ионов 0 , возникших при диссоциации металлических оксидов. Однако кремний восстанавливается на границе металл — шлак в высокотемпературной зоне сварки. Несмотря на близкую с МпО термодинамическую устойчивость, кремний восстанавливается в относительно малых количествах, что свидетельствует о его малой активности в шлаке.  [c.364]

Это достигается при введении в сварочную ванну достаточного количества марганца. Кальций вводят в металл ванны в виде силикокальция через электродные покрытия или порошковую проволоку.  [c.402]


Смотреть страницы где упоминается термин Электродные покрытия : [c.78]    [c.93]    [c.114]    [c.250]    [c.264]    [c.338]    [c.116]    [c.26]    [c.126]   
Смотреть главы в:

Электросварщик Издание 4  -> Электродные покрытия

Электросварщик Издание 2  -> Электродные покрытия

Справочник электросварщика ручной сварки  -> Электродные покрытия

Сварка в промышленном строительстве Издание 4  -> Электродные покрытия

Сварочное дело в строительстве Издание 2  -> Электродные покрытия

Сварка и резка металлов Издание 5  -> Электродные покрытия


Сварка и резка металлов (2003) -- [ c.113 , c.115 ]

Справочник по специальным работам (1962) -- [ c.191 , c.196 ]

Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.424 , c.431 ]



ПОИСК



Задача электроупругости для цилиндра с электродным покрытием

Защита металла газошлаковая 47 Массовые доли газов в металле, наплавленном электродами с покрытиями 49 - Электродные

Исследование ионизирующего действия компонентов электродных покрытий

Компоненты электродного покрытия

Компоненты электродного покрытия гематит

Компоненты электродного покрытия глинозем

Компоненты электродного покрытия кварцевый песок

Компоненты электродного покрытия крахмал

Компоненты электродного покрытия магнетит

Компоненты электродного покрытия мрамор

Компоненты электродного покрытия полевой шпат

Компоненты электродного покрытия поташ

Компоненты электродного покрытия рутил

Компоненты электродного покрытия флюорит

Лабораторная работа 1. Ионизирующее действие материалов электродных покрытий, электродов разных марок и флюЛабораторная работа 2. Свойства сварочной дуги

Основы построения флюсов-шлаков и электродных покрытий

Покрытия электродные -см. Электродные покрытия

Покрытия электродные -см. Электродные покрытия

Применимость оценочных расчетов при разработке электродных покрытий

Технические условия на компоненты электродных покрытий

Толстые (качественные) электродные покрытия

Флюсы для сварки и наплавки — 98, 4.2. Электродные покрытия (обмазки)

Флюсы и электродные покрытия

Электродное покрытие вяжущее

Электродное покрытие газообразующее

Электродное покрытие ионизирующее

Электродное покрытие кислое

Электродное покрытие легирующее

Электродное покрытие основное

Электродное покрытие раскислители

Электродное покрытие рутиловое

Электродное покрытие целлюлозное

Электродное покрытие шлакообразующее

Электродные покрытия состав

Электродные покрытия толстые

Электродные покрытия тонкие



© 2025 Mash-xxl.info Реклама на сайте