Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания разрушающие

Механические методы испытаний разрушающего контроля  [c.149]

Рассмотрим основные требования, которые предъявляются к установкам для испытания разрушающихся теплозащитных материалов.  [c.311]

В последнем случае действительный угол армирования ф на, рис. 2.25 заменен дополнительным углом 90° — ф. Максимальные для этого вида испытаний разрушающие напряжения имеют место при ф = 55°. Теоретическая и экспериментальная диаграммы дефор- мирования для материала с такой структурой (рис. 2.26, а) имеют два характерных участка 1 н 2) и хорошо согласуются между собой. После нарушения сплошности связующего (в расчете = f+2, 2 = 0) диаграммы деформирования (СГ ) и Еу (Оу) — практически параллельные прямые, что свидетельствует об отсутствии приращений сдвиговых деформаций Ау р в монослоях, пропорциональных, изменению разности — е ,. Разрушение сопровождается разрывом  [c.66]


Испытания разрушающие — Недостатки  [c.318]

Характер коррозионного процесса можно установить по изменению механических свойств образца, в основном, по изменению предела прочности при растяжении и относительного удлинения металла. Изменение предела прочности и удлинения металла выражают в процентах от начального значения. При определении предела прочности образца после испытания разрушающую нагрузку относят к начальной площади сечения образца, так как действительное сечение образца после коррозии в большинстве случаев трудно определить. Если имеет место только равномерная коррозия, а межкристаллитное разрушение отсутствует, то изменение предела прочности соответствует уменьшению сечения образца. Если же наряду с равномерной коррозией наблюдается и межкристаллитная, то предел прочности изменяется и за счет разрушения металла на границах зерен. Относительное удлинение образца металла уменьшается за счет как равномерной, так и межкристаллитной коррозии.  [c.89]

Методы испытаний (разрушающие и неразрушающие) самих сварных соединений, а также стандартные методы испытаний для определения физико-механических свойств свариваемых материалов.  [c.236]

Сравнительные испытания чистых образцов из сосны и ели на ударный и статический изгиб показали значительное повышение прочности древесины при динамическом нагружении при уменьшении продолжительности нагружения с 1—2 мин до 1—2 мсек (при ударных испытаниях) разрушающая нагрузка увеличивается в 1,5—  [c.71]

При серийном изготовлении съемных грузозахватных приспособлений с помощью сварки целесообразно отбирать от партии два-три образца сварных деталей для испытания разрушающей нагрузкой.  [c.192]

Для того чтобы приблизить результаты испытаний к реальным условиям эксплуатации материала в конструкции и получить цифры, характеризующие конструктивную прочность, довольно широко стали применять испытание на растяжение с концентраторами (надрезами) —рис. 49. Прочность в этом случае (ст ) определяли как разрушающее напряжение, деленное на сечение нетто (живое сечение в месте надреза).  [c.78]

Для нахождения оа и гпт при фиксированной температуре необходимо иметь данные о разрушающей нагрузке Pf двух образцов с различной жесткостью напряженного состояния. Рассмотрим алгоритм определения Od и шт по результатам испытаний цилиндрического образца с круговым надрезом и образца с трещиной.  [c.97]


При одной и той же температуре проводятся испытания на разрыв цилиндрического образца с круговым надрезом и образца с трещиной, в результате которых соответственно определяются разрушающая нагрузка Pf и критический коэффициент интенсивности напряжений Ki -  [c.97]

При определении выносливости в диапазоне высоких температур на соответствующей кривой не возникает горизонтального участка (что характерно для обычных температур испытания), поскольку разрушающая нагрузка непрерывно уменьшается с увеличением числа циклов до больших значений.  [c.200]

Величину предела выносливости определяют построением кривых усталости. На оси абсцисс откладывают число N циклов, на оси ординат — найденные испытанием стандартных образцов максимальные напряжения о цикла, вызывающие разрушение при данном числе циклов. Разрушающее напряжение в области малых N близко к показателям статической прочности. По мере увеличения числа циклов эта величина снижается и при некотором числе циклов стабилизируется. Ордината (У горизонтального участка кривой усталости является пределом выносливости.  [c.276]

Для пластичных материалов модуль упругости Е, предел упругости и предел текучести при сжатии примерно те же, что и при растяжении. Напряжение, соответствующее разрушающей силе, при сжатии пластичных материалов получить нельзя, так как образец не разрушается, а превращается в диск и сжимающая сила постоянно возрастает. Характеристики, аналогичные относительному удлинению и относительному сужению при разрыве, при испытании пластичных материалов на сжатие также нельзя получить.  [c.101]

Испытания на длительную прочность заключаются в том, что образцы подвергают различным напряжениям при определенной температуре и узнают время до их разрыва. Результат представляют в виде графика (рис. 126, б). Имея кривую длительной прочности материала, можно определить разрушающее напряжение по заданной продолжительности службы детали при данной температуре. Наоборот, по заданному напряжению можно определить время до разруш ения. Например, деталь, изготовленная из материала, для которого кривая длительной прочности изображена на рис. 126,6, при напряжении 300 кгс/см и температуре БОО С разрушится через 2550 ч.  [c.116]

Существующие в настоящее время способы экспериментального исследования напряженных конструкций сводятся, так или иначе, к прямому определению деформаций, возникающих в испытуемом объекте. Напряжения определяются косвенно через деформации на основе закона Гука. В случае пластических деформаций определение напряжений при испытаниях конструкций обычно не производится и определяется только разрушающая нагрузка или то значение силы, при котором наблюдаются признаки возникновения пластических деформаций.  [c.506]

Далее регламентируются порядок контроля качества сварных соединений разрушающими методами и показатели их механических свойств. Так, при испытании сварных соединений на статический изгиб полученные показатели должны быть не ниже приведенных в табл. 1.7.  [c.50]

Как отмечали ранее (раздел 2.2), понятию отказа в теории надежности соответствует принятое в науке о прочности понятие предельного состояния. Возможны различные варианты предельных состояний, ограничивающих условия нормальной эксплуатации аппаратов, например, потеря прочности, потеря жесткости и т.п. Существует также много способов разрушающих испытаний для оценки работоспособности материалов, конструкций или сварных соединений в условиях достижения какого-либо из возможных предельных состояний.  [c.138]

Учитывая представленную выше схему-модель оценки качества и условия доминирующего отказа, можно разбить задачу определения производственно-технологической потери работоспособности сварного аппарата (Апт) на два этапа оценку результатов разрушающих и неразрушающих испытаний.  [c.138]

Предпусковое или периодическое гидравлическое испытание, также как механические испытания образцов, вырезанных из элементов диагностируемого аппарата, относится к методам разрушающего контроля.  [c.330]


Испытания проводят на нескольких образцах, подсчитывая каждый раз число циклов N нагружения образца до его разрушения. Результаты опытов представляют в виде кривой, показывающей зависимость разрушающего числа циклов нагружения от максимального напряжения за цикл (рис. 10.16,6). Эта  [c.130]

Предельное состояние конструкции с группой несвязанных водородных расслоений, образующих область взаимодействующих расслоений, определяют, применяя критерий, аналогичный использованному в [10] для оценки работоспособности труб с глубокими коррозионными язвами. Этот критерий допускает распространение язв в глубь металла на 80% толщины стенки при небольшой площади поражения поверхности. Были проведены испытания давлением стальных сосудов (03-10 мм, длина 10 мм и толщина стенки 19 мм) с водородным расслоением металла на глубине 10 мм со стороны внутренней поверхности. Давление в три раза превышало расчетное разрушающее давление (при условии, что рабочая толщина стенки равна 10 мм). В результате произошла лишь пластическая деформация материала сосудов, что свидетельствует о возможности их эксплуатации при наличии расслоений металла в случае своевременного контроля пораженных участков [24].  [c.129]

К разрушающим методам контроля сварных соединений относят механические испытания, которые производят в  [c.212]

Конечно, очень показательно разрушение чугунной балки таврового сечения, изгибаемой сначала при положении полки вверху, а затем внизу. Здесь фиксируются разрушающие нагрузки при обоих положениях балки, что хорощо подтверждают приведенные в теоретической части курса соображения о рациональном расположении сечения. По-видимому, трудности с изготовлением образцов для испытаний не позволят осуществить эту работу, но она была очень наглядно показана в учебном кинофильме Изгиб прямого бруса .  [c.133]

Поскольку значение нагрузки на диаграмме Р — о не зависит от места измерения смещений, то последние целесообразно измерять вблизи точек приложения нагрузки или вблизи средней точки линии фронта трещины. По синхронно регистрируемым диаграммам Р — Vp можно дополнительно к силовой характеристике Ki определять и деформационную 6i характеристику трещиностойкости материала. Такой подход позволяет комплексно, с единых методических позиций, оценивать трещиностойкость материала как в хрупком, так и в пластическом состояниях. Отметим, что описанная методика определения характеристики Ki строго обоснована только при испытании хрупких материалов, разрушающихся в линейно-упругой области.  [c.741]

В некоторых случаях различают также испытательное давление = 1,5рраб) —давление, при котором производятся испытания гидросистем на герметичность, и разрушающее давление (Рразр = Зрраб) давление, при котором производится испытание агрегатов гидросистем и трубопроводов на прочность. Детали и агрегаты, подвергнутые испытаниям разрушающим давлением, к эксплуатации непригодны.  [c.52]

Как видно из табл. 28 во всех трех испытаниях разрушающее напряжение изменялось о.тносительно мало. Из приведенных выше %  [c.263]

Во-первых, испытанию могут подвергаться материалы, для которых предел текучести гладкого образца больше предела прочности образца с трещиной. Это свидетельствует о том, что данное испытание применимо лишь для материалов, разрушающихся хрупко или полухрупко.  [c.76]

На первом этапе были изучены продольные шлифы гладких цилиндрических образцов, испытанных на растяжение при Т = = —196°С. Согласно разработанной модели, при одноосном растяжении таких образцов их хрупкое разрушение контролируется процессом распространения микротрещин скола. Зарождение же микротрещин скола начинается в соответствии с условием (2.7) при напряжениях и деформациях меньше разрушающих. Однако эти микротрещины при ai < S будут остановлены различными барьерами (границами зерен, границами фрагментов и т. п.). Поэтому на продольном шлифе должны наблюдаться такие остановленные микротрещины, причем их длина может быть различной — от размера зерна (если микротрещина остановлена границами зерна) до размера фрагмента деформацион-  [c.87]

Результаты испытания приведены ниже [разрушающая нагрузка для образца 1 (Р = 800 кгс) II стрела ирогиба при разрушении (/ = 1 мм) приняты равными единице].  [c.148]

Кинетика изменения максимальных напряжений зависит от свойств материала и находится в соответствии с поведением различных групп материалов при мягком нагружении. Так, в испытаниях циклически упрочняющихся материалов при жестком нагружении амплитуда напряжения вначале возрастает. Интенсивность возрастания с увеличением числа циклов уменьшается. После сравнительно небольшого числа циклов амплитуда напряжений становится практически постоянной на большей части долговечности вплоть до разрушения. Размах установившегося напряжения иногда называют шсимптотическим размахом или размахом насыщения . Предполагают, что каждому размаху деформации соответствует определенный асимптотический размах напряжения. Он берется при числе циклов, равном половине разрушающего, т. е. при средней долговечности.  [c.622]

Когда говорят об испытании конструкции, то имеется в виду испытание на прочность целой машины, ее отдельных узлов или моделей. Такое испытание имеет целью, с одной стороны, проверку точности проведенных расчетов, а с другой — проверку правильности выбранных технологических процессов изготовления узлов и ведения сборки, поскольку при недостаточно правильных технологических приемах возможно местное ослабление конструкции. Наиболее широко развито испытание конструкций в таких отраслях техники, как самолетостроение и ракетостроение, где в силу необходимой экономии веса вопросы прочности являются наиболее ответственными. При со.здаиии новой машины отдельные ее узлы, уже выполненные в металле, подвергаются статическим испытаниям до полного разрушения с целью определения так называемой разрушающей нагрузки. Эта нагрузка сопоставляется затем с расчетной. Характер приложения сил при статических испытаниях устанавливается таким, чтобы имитировались рабочие нагрузки для определенного, выбранного заранее расчетного случая, например для шасси самолета— случай посадки, для крыльев — выход из пике, и т. д.  [c.506]


Метод имплант , предложенный французскими исследователями, предусматривает испытание цилиндрического образца-вставки (импланта) с винтовым надрезам, (рис. 13.37) (ГОСТ 26388—84). Образец монтируют на скользяш,ей посадке в отверстие пластины, на которую наплавляют сварной валик и одновременно переплавляют верхнюю часть образца СТЦ регулируют, изменяя q/v. За стандартный СТЦ принят цикл с h/ъ,, равным 10 с. В процессе охлаждения в диапазоне 420... 370 К образцы нагружают постоянным растягивающим усилием. Разрушающие напряжения рассчитывают относительно поперечного сечения образца в надрезе без учета концентрации напряжений.  [c.542]

Методы диагностирования технического состояния сварных сосудов и аппаратов разделяю1гся на разрушающие и неразрушающие. К методам разрушакэщего контроля (РК) можно отнести предпусковое или периодическое гидравлическое испытание, металлографию и химический анализ, исш,ггания на свариваемость и коррозионные испытания.  [c.316]

Водородное растрескивание тройника трубопровода 0720 х 18 мм, сооруженного из труб фирмы УаПпгес, произошло после шести лет эксплуатации. Механические испытания металла из очага разрушения показали, что его прочностные свойства соответствуют техническим условиям. В то же время вследствие нано-дороживания относительное сужение уменьшилось более чем на 30%. Металлографические исследования позволили установить, что водородные блистеры зарождались на границах матрица-неметаллические включения и располагались по всему сечению стенки тройника. При этом их максимальная концентрация наблюдалась в середине стенки. Данное явление можно объяснить повышенной концентрацией неметаллических включений в центральной зоне листа вследствие специфики изготовления проката. В дальнейшем, по мере накопления водорода, блистеры сливались между собой или с поперечными трещинами, пронизывая все сечение металла. Значительное давление водорода в расслоении привело к возникновению разрушающих напряжений в наружных слоях металла стенки и к развитию поперечных трещин с последующей разгерметизацией участка трубопровода (рис. 12г). Водородное растрескивание металла с образованием сквозного дефекта в нижней части тройника явилось следствием его эксплуатации в условиях застойной зоны при отсутствии Э(()фективного ингибирования.  [c.39]


Смотреть страницы где упоминается термин Испытания разрушающие : [c.482]    [c.309]    [c.101]    [c.135]    [c.197]    [c.52]    [c.73]    [c.380]    [c.541]    [c.214]    [c.124]    [c.110]    [c.672]    [c.479]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.16 , c.17 ]



ПОИСК



Испытания не разрушающие — Применение

Испытания разрушающие — Недостатк

Механические методы испытаний разрушающего контроля

Физические не разрушающие методы испытания металлов



© 2025 Mash-xxl.info Реклама на сайте