Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства металлов и методы их определения

Механические и другие свойства металлов и методы их определения. Используемые для изготовления различных изделий материалы прежде всего должны иметь определенный запас механических свойств, обеспечивающих неразрушение изделий эксплуатационными нагрузками.  [c.14]

Механические свойства металлов и методы их определения  [c.287]

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ  [c.73]

СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ  [c.36]


Механические и технологические свойства металлов и методы их определения  [c.46]

Механические характеристики металла элементов конструкций и методы их определения описаны в большом объеме научно-технической литературы и нормативных документов. Однако конструктивные элементы аппаратов имеют некоторые особенности, которые вытекают из условий эксплуатаций и которые накладывают специальные требования к методам определения механических свойств.  [c.277]

В последнее время интерес к влиянию малых количеств приме-сей на свойства чистых металлов постоянно возрастает и в этой области появляется все большее количество работ. Примеси играют важную роль в исследованиях, связанных с физикой металлов. Они образуют точечные дефекты особого вида и способны взаимО действовать с другими дефектами решетки, которые определяют многие из свойств металлов. Следовательно, получение металлов высокой чистоты имеет очень большое значение. С одной стороны, это позволяет проводить исследование дефектов решетки в простых условиях в результате устранения взаимодействия с примесями. С другой стороны, влияние примесей на свойства может изучаться на сплавах, состав которых известен совершенно точно благодаря использованию металлов высокой чистоты. Значительный успех в получении чистых металлов связан с применением метода, получившего название зонной плавки. Этот метод, основанный на раз личной растворимости примесей в твердой и жидкой фазах, оказался весьма плодотворным, поскольку позволил получать металлы с содержанием примесей 10 % и менее. Чтобы эффективно использовать этот метод очистки, исследователь должен иметь в своем распоряжении аналитические способы определения столь малых количеств примесных элементов, а также очень быстрые методы контроля, позволяющие следить за процессами очистки. В рассматриваемом интервале концентраций примесей особый интерес представляют такие методы их определения, как радиоактивационный анализ и измерение остаточного электросопротивления.  [c.431]

Под плавкостью подразумевается свойство вещества переходить под влиянием нагревания из твердого состояния в жидкотекучее. В металлах этот переход совершается при вполне определенных температурах. Эмаль же, подобно стеклу, не имеет определенной температуры плавления. Подвергаясь нагреванию,, она в некотором интервале температур постепенно размягчается и переходит в вязкое, а затем в жидкотекучее состояние. Температурный интервал, ограниченный, с одной стороны, началом размягчения и, с другой стороны, температурой, при которой эмаль становится жидкотекучей, называется интервалом размягчения. Надо при этом иметь в виду, что понятия начала размягчения и жидкотекучего состояния являются условными и зависят от методов их определения.  [c.86]


В ней рассмотрены структура, физические, химические, механические и технологические свойства металлов и изложены методы их определения описаны неметаллические материалы (пластмассы, абразивные материалы) приведены сведения о металлургии черных и цветных металлов, литейном производстве, обработке металлов давлением, о сварке металлов, резании, термической обработке.  [c.2]

Свойства металлов И сплавов зависят от состава и структуры. Их определяют различными методами, которые нужно разделить на механические, физические, технологические, химические и специальные (определение жаропрочности, коррозионной стойкости и т. д.).  [c.81]

Понятие свариваемость металлов не имеет общепринятого определения, как нет и единого стандартного метода испытаний на свариваемость металлов. Однако в общем случае под свариваемостью понимают совокупность свойств металлов и особенностей способов их сварки, обеспечивающих возможность получения соединений требуемого качества. Абсолютно не сваривающихся сталей не существует. Но одни стали свариваются легко всеми способами сварки без применения сложных технических приемов, давая высококачественное сварное соединение, а другие, хотя и свариваются некоторыми способами, но требуют при этом применения специальных более сложных приемов, часто не совсем изученных, при этом качество сварного соединения снижается. В зависимости от этого условно стали подразделяют на хорошо, удовлетворительно, ограниченно и плохо свариваемые.  [c.16]

П. П. Аносов проделал большую научную работу по изучению влияния углерода на свойства стали. Его научные работы оказали большое влияние на развитие производства качественных сталей и на улучшение методов их термической обработки. Дальнейшую работу по изучению свойств металлов и металлических сплавов в зависимости от изменения их состава и строения продолжал гениальный русский ученый Дмитрий Константинович Чернов. Работая инженером на Обуховском сталелитейном заводе в Петербурге, он сделал открытие, которое имело исключительно важное значение для дальнейшего развития металловедения. Д. К. Чернов в результате многочисленных наблюдений над поведением стальных поковок в процессе тепловой обработки установил, что при определенных температурах в стали, находящейся в твердом состоянии, происходит перестройка ее частиц, благодаря чему изменяется структура стали и ее свойства.  [c.28]

Полуклассическая модель позволяет предсказать, как в отсутствие столкновений меняются со временем координата г и волновой вектор к электрона ) при наличии внешних электрических и магнитных нолей. Такое предсказание можно сделать, исходя лишь из знания зонной структуры металла, т. е. вида функций < п(к), и не используя никакой дополнительной информации о периодическом потенциале ионов. В полуклассической модели функции < п(к)] предполагаются известными, и метод их расчета не указывается. Цель модели состоит в установлении связи между зонной структурой и кинетическими характеристиками (т. е. реакцией электронов на приложенные внешние поля и градиенты температуры). Она применяется для расчета кинетических коэффициентов по заданной (вычисленной) зонной структуре, а также для определения свойств зонной структуры но наблюдаемым кинетическим характеристикам ).  [c.220]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]


В теории ползучести изучаются законы связи между напряжениями и деформациями и методы решения соответствующих задач. Ползучесть материалов — это свойство медленного и непрерывного роста упругопластической деформации твердого тела с течением времени под действием постоянной внешней нагрузки. Свойством ползучести в большей или меньшей мере обладают все твердые тела металлы, полимеры, керамика, бетон, битум, лед, снег, горные породы и т. д. При нормальной температуре некоторые материалы (металлы, полимеры, бетон) обладают свойством ограниченной ползучести. С ростом температуры ползучесть материалов увеличивается и их деформация становится неограниченной во времени. Особенно опасно для элементов конструкций и деталей машин проявление свойства ползучести при высоких температурах. Уже при небольших напряжениях материал перестает подчиняться закону Гука. Ползучесть наблюдается при любых напряжениях и указать какой-либо предел ползучести невозможно. В отличие от обычных расчетов на прочность, расчеты на ползучесть ставят своей целью не обеспечение абсолютной прочности, а обеспечение прочности изделия в течение определенного времени. Таким образом, при расчете изделия определяется его долговечность.  [c.289]

Капиллярные методы контроля предназначены для обнаружения поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности и ориентации. Капиллярные методы позволяют контролировать объекты любых форм и размеров, изготовленных из черных, цветных металлов и других неферромагнитных материалов. Их применяют и для контроля деталей из ферромагнитных материалов, если их магнитные свойства, форма, вид и расположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или если этот метод нельзя применять по условиям эксплуатации.  [c.35]

Первоначально методы тепловой микроскопии, например высокотемпературная вакуумная металлография, позволяющая определенным образом устанавливать связь между свойствами зерен, их границ и агрегата в целом, основывались главным образом на эффекте термического травления, заключающемся в выявлении строения металлов и сплавов вследствие избирательного испарения в вакууме при достаточно высоких температурах и влиянии поверхностного натяжения, а также на всех явлениях, связанных с объем-  [c.9]

Для определения твердости покрытия можно пользоваться лишь методом царапания с применением склерометра типа Мартенса или методом затухающих колебаний на маятниковом приборе Кузнецова. Все другие известные методы испытания твердости (методы вдавливания и методы упругого отскакивания бойка) не пригодны для испытания твердости покрытий, так как при их применении на получающиеся результаты оказывают влияние механические свойства основного металла. Объясняется это незначительностью толщины слоя покрытий, наносимых на детали. Исключить влияние основного металла можно, лишь увеличивая толщину слоя покрытая на испытываемых образцах.  [c.546]

Назначение. Изучение структуры и свойств различных металлов создание новых марок сплавов и сталей разработка новых методов, режимов термообработки металлов и сплавов, внедрение их в производство выполнение производственно-исследовательских и научно-исследовательских работ и внедрение в производство результатов исследований и открытий научно-исследовательских институтов и, специальных лабораторий контроль макро- и микроструктуры металлов, отливок, штамповок, деталей машин, инструментов, штампов и других изделий технологического оснащения производства изучение брака и преждевременного износа деталей, определение причин их возникновения, разработка рекомендации по их ликвидации обслуживание технологических лабораторий, контроль выполнения технологических процессов термообработки в цехах, руководство цеховыми экспресс-лабораториями.  [c.175]

Окислительно-коррозионное испытание. Так называемое окислительно-коррозионное испытание является, несомненно, наиболее распространенным методом определения стабильности свойств жидкостей. Жидкость в этом случае испытывают в присутствии металлов. Определенный объем жидкости заливают в пробирку или в большой стеклянный сосуд. Металлические образцы тщательно очищают, полируют и взвешивают, а затем каждый в отдельности подвешивают в сосуде. Нередко для устранения каталитического воздействия металлов испытания проводят без металлических образцов. Если же необходимо оценить влияние металлов, находящихся в контакте др т с другом, металлические образцы собирают в определенном порядке и подвешивают в виде комплектов. Сосуд с образцами присоединяют к обратному холодильнику и при помощи трубки, пропущенной через обратный холодильник, в него подают воздух, кислород или какой-либо другой газ. Скорость подачи газов, количество жидкости, тип металлов и их размещение, длительность испытания и температура могут быть различными. Использование данного метода предусмотрено военными спецификациями и широко практиковалось многими исследователями жидкостей для гидравлических систем. В частности, оно предусмотрено Федеральным методом испытаний [62].  [c.81]

Широко используют в коррозии также различные аналитические методы — электрохимические (кулоно-метрию, электрометрическое титрование, полярографические определения) и ряд других — хроматографию, спектрографию, ядерный магнитный резонанс и даже построение спектров Мессбауэра. По существу, почти все методы физико-химических исследований металлов и особенно касающиеся изучения свойств, состава и строения их поверхности находят применение и в коррозионных исследованиях.  [c.6]


Здесь же только отметим, что наиболее простым и общим методом определения химической стойкости металлов является определение растворимости их в кислотах путем взвешивания после определенного времени выдержки в растворителе. Этот метод и будем главным образом иметь в виду при характеристике химических свойств металлов и сплавов. Конечно, при этом не может быть большой точности в определении, так как в различных кислотах и при их разной концентрации металлы могут вести себя по-разному. Но все же в одинаковых условиях испытания Сольшая или меньщая растворимость в кислотах может служить количественным показателем стойкости металла (сплава) против химического воздействия. Этот показатель будет представлять ценность и в том отношении, что он может до некоторой степени характеризовать и протравимость шлифов, т. е. скорость, с которой тускнеет блестящая поверхность шлифа при травлении его реактивом большей частью кислотного характера.  [c.125]

Магнитные методы исследования применяют как для определения величины магнитных свойств металлов и сплавов — коэрцитивной силы Не, остаточной индукции Вг и магнитной проницаемости 1 (используемых, например, в электромашиностроении), так и для изучения превращений протекающих в металлах и сплавах в твердом состоянии. Еще недавно посредством магнитных исследований в основном изучались превращения в ферромагнитных металлах и сплавах теперь их применяют для изучения и парамагнитных металлов и сплавов. Магнитные испытания позволяют исследовать изменения величины магнитной восприимчивости у, магнитного насыщения 4л7 , коэрцитивной силы и другие магнитные свойства. Для исследования магнитных свойств служат специальные установки наиболее широко применяются баллистическая установка и анизометр Н. С. Акулова.  [c.25]

СПЛ.4ВЫ металлические — макроскопически однородные системы из двух и более металлов и неметаллов, обладающие характерными свойствами ме-ти.г.юв. В более широком смысле С. наз. любые однородные системы, по.иученные сплавлением металлов, неметаллов, окислов, сульфидов, органич. веществ и т, д, К С, не относят макроскопич, неоднородные слстемы, напр, соединенные сваркой или пайкой куски чистых металлов (за исключением возникающего диффузионного пограничного слоя) иногда к С. не относят и химич. соединения определенного состава (нанр., Mp Znj и др,). Как металлич. С, (сталь, бронза и др.), так и неметаллич. (нанр,, стекло) ши1>око применяют в технике. Обусловлено это тем, что I . зависимости от состава С, и методов их обработки можно получать материалы с разнообразнейшими свойствами.  [c.51]

При исследовании физических свойств металлов и сплавов и применении физических методов исследования для изучения их структуры и изменения ее в зависимости от различных факторов особое впи.мание должно быть уделено определению точиости получаемых результатов опыта, так как в этом случае она будет существенно зависеть от приицппиальиоп схемы исследования, при-  [c.179]

Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]

Общую и локальную виды коррозии контролируют не реже 2 раз в месяц по зондам электросопротивления или аналогичным, но другого типа по всей технологической линии в жидких фазах, газовой фазе и по возможности на границах раздела, а также не менее 1 раза в год по образцам-свидетелям и замерам толщины стенок ультразвуковым или другим дефектоскопом. За сероводородным растрескиванием ведется наблюдение косвенным методом по степени водородпроницаемости водородных зондов на первой стадии (в течение года) не реже 1 раза в неделю и на последующей—1 раза в квартал по напряженным образцам и образцам для гиба-перегиба — не реже 1 раза в год. По мере проведения ремонтных работ необходимы вырезка образцов металла и полный анализ их состояния определение механических свойств, содержания водорода, стойкости к сероводородному растрескиванию, а также металлографические исследования. Кроме того, периодически проводится визуальный осмотр внешнего состояния и не реже 1 раза в год — внутренний осмотр сосудов с проведением соответствующих замеров и техническим освидетельствованием их.  [c.176]

Для хрупких же покрытий (или сцепляюш ихся с металлом при помош,и хрупких промежуточных слоев) разработка теоретических основ определения прочности их сцепления с металлом и тем более методов экспериментального определения этого свойства покрытия встречается с непреодоленными до последнего времени трудностями.  [c.41]

Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультра-мелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрущений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19].  [c.9]

МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]


Прибор автоматически молсет регистрировать диаграмму вдавливания в координатах Р, h, а также в координатах Pjh, h. При подсчете Н по методу Бриыелля через глубину невосстановленного отпечатка, т. е. Н = Р1(кОк), отношение P/h связано с Н постоянным для данного шара коэффициентом 1/(я 1), что позволяет просто оценить значение Н в любой точке диаграммы. Совершенствование приборов для автоматической записи диаграммы вдавливания, детальное исследование диаграмм и их связи с диаграммами растяисения представляют основную задачу при дальнейшей разработке безобразцовых методов определения механических свойств металлов по характеристикам твердости.  [c.348]

Безобразцовый метод основан на инденторшлх испытаниях материалов, в результате которых определяют специальные характеристики твердости и пересчитывают их на показатели других механических свойств. Главное его достоинство заключается в возможности ускоренной оценки механических характеристик металла готовых изделий, не выводя их из строя и не вырезая из них образцов. Поэтому этот метод получил название безобразцового метода определения механических свойств.  [c.49]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]


Смотреть страницы где упоминается термин Свойства металлов и методы их определения : [c.9]    [c.161]    [c.2]    [c.859]    [c.642]    [c.337]   
Смотреть главы в:

Технология металлов  -> Свойства металлов и методы их определения



ПОИСК



Металлов Свойства

Методы определения механических свойств металлов во взаимодействии со средой Определение склонности сплавов к коррозионному растрескиванию Ажогин)

Механические и технологические свойства металлов и методы их определения

Механические свойства металлов и методы их определения

Механические свойства металлов и методы их определения Процессы, происходящие при нагружении и деформировании металлов

Микромеханические методы определения механических свойств Микромеханические испытания металлов (В. Л. Конопленко, Фридман)

Неразрушающий (безобразцовый) контроль механических свойств металла по характеристикам твердоТвердость и основные методы ее определения

Определение свойств металлов

Основные методы определения механических свойств металлов и i сплавов

Технологические свойства металлов и методы их определения



© 2025 Mash-xxl.info Реклама на сайте