Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сверхзвуковое течение и характеристики

Сверхзвуковое течение и характеристики  [c.150]

Если отрыв потока нежелателен в инженерных приложениях, его условились называть срывом . Напомним, что срывом на крыловом профиле называют отрыв потока, ухудшающий характеристики профиля вследствие резкого возрастания сопротивления и падения подъемной силы. Однако на практике отрыв потока не всегда нежелателен. Например, благодаря взаимодействию отрывного течения, создаваемого иглой, установленной перед тупым телом, при сверхзвуковых скоростях полета с отошедшим головным скачком уплотнения лобовое сопротивление сильно уменьшается. Следовательно, необходимо новое определение понятия срыва как явления в течении, которое приводит к накоплению значительных количеств заторможенной жидкости и часто связано с появлением нестационарности [35]. Нестационарность возникает из-за периодических выплескиваний накопившейся застойной жидкости, а так как возможность вытекания исключена, накопление жидкости продолжается. В трехмерном течении существует компонента скорости, перпендикулярная направлению основного потока. Накопленная жидкость может выплескиваться в этом направлении. Поэтому в несимметричном течении, т. е. в трехмерном течении, срывы встречаются редко. Однако в строго двумерном течении вытекание по нормали к направлению основного потока исключено и возможно накопление значительного количества заторможенной жидкости с периодическим выплескиванием другими словами, возникает срыв. На практике двумерные течения встречаются весьма редко и чаще всего наблюдается осесимметричное течение. В противоположность строгому определению отрыва потока определение срыва следует считать довольно субъективным, так как его существование связано с геометрией поля течения и характеристиками жидкости.  [c.46]


В рассматриваемых задачах, где часть контура (слева от а) задана, а часть строится в процессе решения, для расчета области сверхзвуковых скоростей естественно и наиболее оправдано применение классической схемы метода характеристик (МХ). Нри этом в силу более высокой точности МХ по сравнению с СГК целесообразно использовать минимум информации, получаемой по СГК в процессе установления. Ниже в качестве такого минимума бралась зависимость на ЗЛ угла наклона 19 = 19 вектора скорости к оси х от одной из координат. Эта зависимость корректировалась затем в соответствии с известными аналитическими решениями. Указанной информации достаточно для того, чтобы по ней с помогцью МХ рассчитать все сверхзвуковое течение и построить контур аЬ. Одновременно вновь строится и ЗЛ, что служит одним из критериев оценки точности результатов счета.  [c.514]

В случае плоскопараллельного течения и течения с осевой симметрией в меридианной плоскости эти поверхности переходят в линии, называемые линиями Маха, Условие (2,26) мо кет быть выполнено только при сверхзвуковом течении (и > а). Таким образом, линии Маха так же, как характеристики, могут существовать только в сверхзвуковых установившихся потоках. Вводя в рассмотрение угол Маха а и угол вектора скорости . с помощью условия (2,26) нетрудно получить уравнения линий Маха, совпадающие с уравнениями (2,22), Таким образом, мы показали тождественность характеристик уравнений движения газа в плоскости х,у Л линий Маха в этой плоскости. Как и в линейной теории, линии Маха являются огибающими (границами) области влияния возмущений, проведенными в сторону течения и исходящими из данной точки. Но в отличие от линейной теории, линии Маха, вообще говоря, будут кривыми. Это можно показать так же, как в линейном случае, основываясь на том, что малые возмущения распространяются со скоростью звука, которая теперь переменна,  [c.365]

Численный расчет сверхзвукового течения методом характеристик сводится к последовательному решению отдельных элементарных задач, связанных с определением координат внутренних и граничных узлов характеристической сетки и параметров течения в этих узлах. При решении этих задач узлы характеристической сетки определяются как точки пересечения отрезков прямых линий, уравнения которых являются конечно-разностными аналогами соответствующих дифференциальных уравнений направления. Этими линиями могут быть отрезки характеристик первого или второго семейства, линий тока или ударных волн. Параметры в искомом внутреннем узле характеристической сетки определяются с помощью условий совместности вдоль характеристик, а в граничном узле — с помощью условий совместности и соответствующего граничного условия.  [c.129]


Анализ течения и характеристик трехмерных сопел с использованием численных методов в большинстве случаев делается без учета вязкости [64], [83], [85] и др. Результатов экспериментальных исследований трехмерных сверхзвуковых сопел в литературе значительно меньше, чем данных по осесимметричным или плоским соплам.  [c.258]

Данное в 82 определение характеристик как линий, вдоль которых распространяются (в приближении геометрической акустики) малые возмущения, имеет общее значение, и не ограничено применением к плоскому стационарному сверхзвуковому течению, о котором шла речь в 82.  [c.542]

Для интегрирования системы нелинейных уравнений гиперболического типа широко используется метод характеристик. Решение рассчитывается с помощью характеристической сетки, выстраиваемой в процессе счета. Этот метод позволяет детально изучить физическую картину течения. Но его трудно применять при расчете сложных сверхзвуковых течений, когда внутри потока содержатся интерферирующие ударные волны, тангенциальные разрывы и другие особенности.  [c.267]

Ниже будут рассмотрены основные идеи метода характеристик и подробно описан нашедший широкое применение конечно-разностный метод сквозного счета сверхзвуковых течений, являющийся стационарным аналогом метода С. К. Годунова.  [c.267]

Метод характеристик применяется для расчета сверхзвуковых течений, при этом используются физические закономерности распространения в сверхзвуковом потоке слабых волн разрежения и сжатия, волн Маха.  [c.273]

Метод решения гиперболических уравнений, использующий характеристики и условия на них, назовем методом характеристик. Этот метод широко применяется при решении задач газовой динамики в случае сверхзвуковых течений (М > 1).  [c.241]

В гл. 1—3 книги в форме вопросов и задач рассматриваются основные сведения из аэродинамики, кинематика и динамика газообразной среды, позволяющие глубоко изучить важнейшие математические модели аэродинамики (уравнения Эйлера, Навье—Стокса, неразрывности и цр.). В гл. 4 и 5 приводится необходимая информация о скачкообразных процессах и расчете параметров при сверхзвуковом течении газа (метод характеристик). Широкий круг вопросов и задач, помещенных в гл. 6—8, относится к одному из основополагающих направлений аэродинамики— теории и методам расчета обтекания профиля крыла, а также несущей поверхности как одного из элементов летательного аппарата.  [c.4]

Часть вопросов и задач данной главы знакомят с математическими основами метода характеристик, условиями, при которых имеются решения характеристических уравнений и возможен расчет газовых течений методом характеристик. Ряд из них посвящен выяснению физического смысла характеристик, рассмотрению условий совместности уравнений для таких характеристик. Особое внимание уделяется практическому использованию метода характеристик на примерах расчета течений Прандтля—Майера и решения отдельных задач, связанных со сверхзвуковыми плоскими или пространственными осесимметричными течениями.  [c.138]

Современные представления об управлении обтеканием непосредственным образом связаны с отрывными течениями, которые широко встречаются как в случае внешнего обтекания ракетно-космических аппаратов, так и при движении газа внутри различных каналов (сверхзвуковые сопла реактивных двигателей и аэродинамических труб, диффузоры и др.). Интерес к исследованию таких течений в последнее время возрос из-за выявившейся возможности регулировать аэродинамические характеристики обтекаемых тел путем управления этими течениями и осуществлять соответствующие расчеты при помощи вычислительных машин. В гл. VI анализируются виды отрывных течений и рассматриваются случаи их реализации при управлении обтеканием. Эффект управления отрывным течением связан с предотвращением, затягиванием или созданием условий преждевременного отрыва потока при помощи соответствующих приспособлений.  [c.7]


Генератор программ ПОТОК предназначен для расчета стационарных плоских или осесимметричных сверхзвуковых течений соверщенного газа методом характеристик. Он является подчиненным пакетом второго уровня ГАММА и входит в раздел F его библиотеки. По запросу пользователя ПОТОК генерирует программу решения конкретной газодинамической задачи из имеющихся заготовок-модулей.  [c.218]

В лаборатории турбомашин МЭИ введены в эксплуатацию различные стенды влажного пара, ориентированные на экспериментальное изучение следующих основных задач I) механизма конденсации в равновесных и неравновесных течениях влажного пара при больших скоростях и, в частности, скачковой конденсации 2) механизма и скорости распространения возмущений в двухфазной среде и условий перехода через скорость звука 3) основных свойств дозвуковых и сверхзвуковых течений в каналах различной формы с подробным изучением волн разрежения и скачков уплотнения в эту группу включаются исследования основных энергетических и расходных характеристик сопл, диффузоров и других каналов 4) двухфазного пограничного слоя и пленок, образующихся на поверхностях различных форм 5) течений влажного пара в решетках турбин (плоских, прямых и кольцевых) с подробным изучением структуры потока, углов выхода, коэффициентов расхода и потерь энергии 6) структуры потока и потерь энергии в турбинных ступенях, работающих на влажном паре, с подробным изучением оптимальных условий сепарации влаги из проточной части и явлений эрозии.  [c.388]

Для расчета сверхзвуковых течений используется сетка характеристик в плоскости годографа первого и второго семейств.  [c.131]

Расчет сверхзвукового течения на выходе из турбинной решетки, называемого течением в косом срезе, был дан авторами метода характеристик Прандтлем и Буземаном [127].  [c.226]

Для расчета сверхзвуковых течений используется сетка характеристик в плоскости годографа первого и второго семейств. Совокупность характеристик двух семейств в плоскости годографа называется диаграммой характеристик.  [c.25]

При больших дозвуковых скоростях полета (Мя>0,8), и особенно при переходе к сверхзвуковым скоростям полета, характеристики дозвуковых воздухозаборников резко ухудшаются. На их внешней поверхности образуется течение с местными сверхзвуковыми зонами, что приводит к заметному росту внешнего сопротивления. При Мн>1 перед плоскостью входа появляется головная волна. При умеренных сверх- звуковых числах М полета (Мн<1,4. .. 1,6) потери полного давления в самой головной волне относительно невелики, но коэффициент внешнего сопротивления обычно продолжает увеличиваться и при Мн>1, причем характер его изменения от Мн суш,ественно зависит от формы обечайки.  [c.257]

Так как в рассматриваемом случае речь идет о слабом возмущении, то эту линию называют границей слабых, или звуковых, возмущений, слабой волной, характеристикой или линией Маха. При этом имеется в виду, что слабые возмущения распространяются со скоростью звука (гл. 1). На рис. 5.1 представлены две схемы сверхзвукового течения. Обтекание выпуклого угла (рис. 5.1,а) сопровождается расширением потока, умень шением давления на величину dp и возрастанием скорости на d . При обтекании вогнутого угла давление растет, а скорость падает. Следовательно, в первом случае характеристика является слабой волной разрежения, а во втором — слабой волной сжатия.  [c.109]

Развитие метода характеристик для двумерных сверхзвуковых течений шло в ЛАБОРАТОРИИ в двух направлениях. Работы первого из них, выполнявшиеся в кооперации с ВЦ АН СССР и с КБ Энергомаш , были направлены на учет эффектов неравновесности и двух-фазности [4, 5, 9-11]. Цель работ второго направления - создание на основе метода характеристик эффективных алгоритмов расчета плоских и осесимметричных сверхзвуковых течений и построения оптимальных аэродинамических форм, прежде всего сопел разных типов, реализующих максимум тяги, требуемый поток в сечении выхода и т.п. О работах этого направления достаточно подробно сказано во Введении к Части 4. В дополнение к этому, отметим, что в процессе создания новых алгоритмов, как правило, совершенствуется и сам метод характеристик. Примеры такого совершенствования любозна-  [c.115]

Этапы коррекции этого профиля отражены на рис. 1, б-г. Па РИС. 1, б представлены изомахи, отвечающие его обтеканию композитным газом при использовании фиктивного газа с /3 = 4. В закритической области изомахи даны через АМ = 0.1. Па рис. 1, в при десятикратном уменьшении числа характеристик каждого семейства, нарисована характеристическая сетка, получающаяся в процессе расчета сверхзвукового течения методом характеристик. Там же сплошной кривой и штрихами изображены участки контуров исходного и суперкритического профилей. По сравнению с исходным площадь продольного сечения суперкритического профиля уменьшилась на 6.4%. Рис. 1,8 дает найденное установлением поле чисел Маха, по-  [c.259]

Исходные уравнения (90). Линии тока (91). Интеграл Бернулли (91). Максимальная и кригичсская скорости (93). До- и сверхзвуковые течения (93). Характеристики (94). Трубки тока (96). Ударные волны (98). Преобразование Мунка - Прима (100).  [c.4]

Пусть заданы кусочно-непрерывная кривая Г, являющаяся С+ или -характеристикой, а также в общем случае разрывные газо динамические параметры вдоль нее Р(Гг) или Р ) (Р(Гг), Р ) — вектор-столбец газодинамических параметров, Гг — радиус-вектор любой точки кривой Г, г з — функция тока), определяющие некоторое сверхзвуковое течение, и граничная кусочно-непрерывная кривая Q, имеющая одну общую точку В с кривой Г и целиком лежащая в угловой области, образованной характеристиками С+ и С (рис. 4.40, а—е). В случае, если на Г задана ударная волна Ь (рис. 4.40, а), то она должна располагаться вне области влияния данных в выходном сечении искомого канала ОСВ на рис. 4.40, а и 0 С В на рис. 4.40, б). При расчете профиля сопла с учетом неоднородности полной энтальпии, удельной энтропии или при наличии закрутки потока в Рмогут быть включены распределения этих параметров в зависимости от функции тока г з, которые определяются течением во входной дозвуковой и трансзвуковой областях сопла Задания исходной характеристики С (рис  [c.175]


На трансзвуковых режимах работы при уменьшении нагрузки на лопатки может появиться флаттер запирания. Аналогично на сверхзвуковых режимах в области вертикальных ветвей характеристик может возникать флаттер при бессрывном течении, который рассчитывается на основе теории малых возмущений [8.75]. Различие между флаттером при бессрывном сверхзвуковом течении и флаттером ударных волн зависит от конструкции лопаток. Однако ударноволновой флаттер часто вызывается интенсивными скачками уплотнения от соседних лопаток, которые,  [c.240]

Эти характеристики для сверхзвукового потока являются действительными, и для решения приведенных выше уравнений можно воспользоваться методом характеристик, предложенным Зауером [679]. Условия в околозвуковой области вблизи горла сопла получены путем экстраполяции метода Зауера. По-видимому, с учетом последних исследований, упомянутых в разд. 7.2 и 7.3, можно получить точное решение для этой области. Как и раньше, следует использовать квазинепрерывное представление среды с ограничением, согласно которому характеристики существуют только при М 2 > 1. Сверхзвуковые течения газа с частицами рассматриваются также в работах Крайбела [439], посвященной косому скачку уплотнения, и Моргенталера [553] об угле наклона ударной волны на клине, обтекаемом потоком газа с частицами. В работах [671, 678[ исследован метод характеристик в применении к двухфазному потоку.  [c.344]

Что касается области существования простой волны при обтекании вогнутого профиля, то вдоль линий тока, проходящих над точкой О, оно применимо вплоть до места пересечения этих линий с ударной волной. Липин же тока, пролодящие под точкой О, с ударной волной вообще не пересекаются. Однако отсюда нельзя сделать заключение о том, что вдоль них рассматриваемое решение применимо везде. Дело в том, что возникающая ударная волна оказывает возмущающее влияние и на газ, текущий вдоль этих линий тока, и таким образом нарушает движение, которое должно было бы иметь место в ее отсутствии. В силу свойства сверхзвукового потока эти возмущенггя будут, однако, проникать лишь в область газа, находящуюся вниз по течению от характеристики ОА, исходящей из точки начала ударной волны (одна из характеристик второго семейства). Таким образом, рассматриваемое здесь решение будет применимым во всей области слева от линии АОВ. Что касается самой линии ОА, то она будет представлять собой слабый разрыв. Мы видим, что непрерывная (без ударных волн) во всей области простая волна сжатия вдоль вогнутой поверхности, аналогичная простой волне разрежения вдоль выпуклой поверхности, невозможна.  [c.606]

В соответствии с уравнением (5.42) сдви1 характеристик относительно эпициклоид возможен в следующих случаях 1) сверхзвуковое течение плоское (е = 0) и вихревое (непотенциальное, dS dn Ф0>), 2) поток пространственный осесимметричный (е = 1), являющийся либо потенциальным (dS/dn = 0), либо вихревым (не-потенциальпым, dS/dn Ф 0).  [c.151]

В лаборатории турбомашин МЭИ используются различные стенды влажнога водяного пара, ориентированные на изучение 1) условий подобия и моделирования двухфазных течений в различных каналах и в элементах проточной части турбин АЭС 2) механизмов скачковой и вихревой конденсации пара в соплах каналах и решетках турбин при дозвуковых и сверхзвуковых скоростях 3) влияния периодической нестационарности и турбулентности на процессы образования дискретной фазы, взаимодействия фаз и интегральные характеристики потоков 4) двухфазного пограничного слоя и пленок в безградиентных и градиентных течениях 5) механизма и скорости распространения возмущений в двухфазной среде, а также критических режимов в различных каналах в стационарных и нестационарных потоках 6) основных свойств и характеристик дозвуковых и сверхзвуковых течений в соплах, диффузорах, трубах, отверстиях и щелях 7) влияния тепло- и массообмена на характеристики потоков в различных каналах 8) течений влажного пара в решетках турбин с подробным изучением структуры потока и газодинамических характеристик 9) структуре потока, потерь энергии и эрозионного процесса в турбинных ступенях, работающих на влажном паре 10) рабочего процесса двухфазных струйных аппаратов (эжекторов i и инжекторов).  [c.22]

В сверхзвуковых течениях нри наличии ударных волн пересечение ударной волной поверхности с вязким пограничным слоем приводит к образованию О. т., существенно влияющего на аэродинамич. характеристики тела и его тепловой режим. Для турбулентного пограничного слоя возникновение О. т. при взаимодействии с ударной волной определяется нск-рым критич. отношением давлений в ударной волне р р , где давление во внеш. потоке перед ударной волной, а Р2 — давление за ной. Установлена эмппрнч. зависимость  [c.516]

Уравнение (1-63), выражающее функцию 6(Я), является уравнением годографа скорости для данной линии тока в поляр ных координатах (рис. 1-14). Годограф ско рости представляет собой эпициклоиду Нормаль к годографу скорости F A являет ся характеристикой в плоскости потока Линию годографа скорости E F H U назы вают характеристикой в плоскости годогра фа. Все линии тока имеют общий годограф скорости, т. е. форма характеристики в плоскости годографа не зависит от характера течения и одинакова для всех плоских сверхзвуковых потоков газа данных физических свойств.  [c.25]

Диаграмма характеристик в плоскости годографа (см. приложение 2) используется для приближенных расчетов плоских сверхзвуковых течений. С этой целью в плоскости годографа наносят отрезки характеристик двух семейств на одинаковом и достаточно малом расстоянии друг от друга. Для практического использования достаточна часть кольцевой области, расположенная в секторе с углом 90°. Заметим, что любая окружность в плоскости годографа представляет собой линию постоянного модуля скорости, а любой луч, идущий из центра О, определяет направление вектора скорости в данной точке. Внутренняя окружность разбивается на градусы отсчет угла ведется от горизонтальной оси плоскости годографа (положительные углы откладываются вверх, а отрицательные — вниз). Каждой эпициклоиде приписывается номер, показывающий угол луча, продолл<ением которого служит рассматриваемая эпициклоида. Эпициклоиды первого семейства, идущие вверх, имеют индекс 1 (Юь 20ь 30, и т. д.), идущие вниз обозначены индексом 2 (IO2, 262, ЗО2 и т. д.).  [c.115]

Между характеристиками Ат и Ат2 происходит расширение газа от р до рг- Линии тока, пересекая волну разрежения, искривляются. Промежуточным точкам линии тока в пределах волны разрежения соответствуют характеристики Ami, АШп и т. д. вдоль каждой характеристики параметры течения остаются неизменными. Углы между характеристиками и касательными к линиям тока в направлении течения уменьшаются ai>af>a . Линии тока при этом расходятся, расстояние между ними по нормалям увеличивается (/2>fi на рис. 5.7) в соответствии с одномерной схемой ускоряющего сверхзвукового течения ( 3.4, рис. 3.4). Интенсивность волны туАт2 меняется при изменении давления р . При этом, если параметры невозмущенного потока остаются неизменными, характеристика Лт, сохраняет неизменное положение, а характеристика Лтг перемещается в зависимости от р2.  [c.117]



Смотреть страницы где упоминается термин Сверхзвуковое течение и характеристики : [c.117]    [c.82]    [c.46]    [c.532]    [c.172]    [c.313]    [c.287]    [c.131]    [c.458]    [c.112]    [c.114]    [c.123]    [c.444]    [c.225]    [c.176]    [c.273]   
Смотреть главы в:

Математические основы классической механики жидкости  -> Сверхзвуковое течение и характеристики



ПОИСК



Л <иер сверхзвуковой

Метод характеристик для решения задач осесимметричного сверхзвукового вихревого течения газа

Плоский сверхзвуковой поток. Общие свойства характеристик. Графический метод расчета сверхзвуковых течений

Сверхзвуковые течения. Метод характеристик

Течение сверхзвуковое

Характеристики в плоском сверхзвуковом течении

Характеристики сверхзвукового

Характеристики течения



© 2025 Mash-xxl.info Реклама на сайте