Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сверхзвуковые течения. Метод характеристик

СВЕРХЗВУКОВЫЕ ТЕЧЕНИЯ. МЕТОД ХАРАКТЕРИСТИК  [c.73]

В соответствии со сказанным были выполнены расчеты оптимальных осесимметричных сопел с плоской переходной поверхностью. В расчетах совершенный газ имеет показатель адиабаты х = 1.4. Отход от переходной поверхности осуществлялся разложением в ряды [9], а расчет сверхзвукового течения - методом характеристик [8]. Экстремальная характеристика определялась по соотношениям работы [6.  [c.484]


Сверхзвуковые течения ). Метод характеристик  [c.280]

Численный расчет сверхзвукового течения методом характеристик сводится к последовательному решению отдельных элементарных задач, связанных с определением координат внутренних и граничных узлов характеристической сетки и параметров течения в этих узлах. При решении этих задач узлы характеристической сетки определяются как точки пересечения отрезков прямых линий, уравнения которых являются конечно-разностными аналогами соответствующих дифференциальных уравнений направления. Этими линиями могут быть отрезки характеристик первого или второго семейства, линий тока или ударных волн. Параметры в искомом внутреннем узле характеристической сетки определяются с помощью условий совместности вдоль характеристик, а в граничном узле — с помощью условий совместности и соответствующего граничного условия.  [c.129]

Часть вопросов и задач данной главы знакомят с математическими основами метода характеристик, условиями, при которых имеются решения характеристических уравнений и возможен расчет газовых течений методом характеристик. Ряд из них посвящен выяснению физического смысла характеристик, рассмотрению условий совместности уравнений для таких характеристик. Особое внимание уделяется практическому использованию метода характеристик на примерах расчета течений Прандтля—Майера и решения отдельных задач, связанных со сверхзвуковыми плоскими или пространственными осесимметричными течениями.  [c.138]

В частности, представляют практический интерес результаты определения относительного импульса (или коэффициента импульса) плоских сверхзвуковых сопел, приведенные в работах [85], [116], [152]. В работе [116] данные приведены на основании эмпирического обобщения экспериментальных данных, в работе [152] — на основании расчета течения методом характеристик (без учета трения на боковых щеках), в работе [85] — с использованием метода характеристик и монотонной конечно-разностной схемы.  [c.196]

Рассматривается газовый поток, имеющий скорость звука на прямой О А в меридиональной плоскости течения (рис. П1), и параллельный оси симметрии X. Если вниз по потоку канал расширяется и его образующая САВ имеет излом в точке А, то скорость течения становится сверхзвуковой и из точки излома выходит пучок характеристик с номерами х-Вне окрестности прямой О А течение без труда можно рассчитать, например, методом характеристик. Для этого предварительно необходимо определить трансзвуковое течение в окрестности О А.  [c.224]


Для интегрирования системы нелинейных уравнений гиперболического типа широко используется метод характеристик. Решение рассчитывается с помощью характеристической сетки, выстраиваемой в процессе счета. Этот метод позволяет детально изучить физическую картину течения. Но его трудно применять при расчете сложных сверхзвуковых течений, когда внутри потока содержатся интерферирующие ударные волны, тангенциальные разрывы и другие особенности.  [c.267]

Ниже будут рассмотрены основные идеи метода характеристик и подробно описан нашедший широкое применение конечно-разностный метод сквозного счета сверхзвуковых течений, являющийся стационарным аналогом метода С. К. Годунова.  [c.267]

Метод характеристик применяется для расчета сверхзвуковых течений, при этом используются физические закономерности распространения в сверхзвуковом потоке слабых волн разрежения и сжатия, волн Маха.  [c.273]

Заметим, что все вышеприведенные расчеты выполнены без учета нарастания пограничного слоя на обтекаемых поверхностях. Влияние пограничного слоя может быть учтено введением поправки в контур тела на толщину вытеснения б. Для этого необходимо применить какой-либо численный или интегральный метод расчета ламинарного или турбулентного пограничного слоя (гл. VI) совместно с изложенным выше методо<м сквозного счета. При наличии интенсивных скачков уплотнения в сверхзвуковом потоке возможен отрыв пограничного слоя (гл. VI, 6). Отрыв пограничного слоя приводит к картине течения в канале, существенно отличающейся от идеального расчета. Оставаясь в рамках приведенной выше методики расчета, можно попытаться в первом приближении учесть влияние отрыва на характеристики течения. С этой целью предлагается использовать зависимости для отношения давлений в зоне отрыва дг/ро и для длины отрывной зоны Ь/б (гл. VI, 6). При расчете течения методом сквозного счета от сечения, где начинается отрывная зона, как и в случае струи, на границе задается давление, равное давлению в зоне отрыва. Заметим также, что при расчете струи, вытекающей из сопла во внешний поток, возможно учесть влияние спутного потока, решая соответствующую задачу о взаимодействии двух сверхзвуковых потоков на границе струи.  [c.293]

В сверхзвуковом потоке, т, е. при w4> с, дифференциальное уравнение (9.75) решается методом характеристик. Чтобы дать понятие об этом методе, рассмотрим распространение слабых возмущений в сверхзвуковом потоке газа. Слабые возмущения, как мы знаем из 9.3, распространяются в газе со скоростью звука. Это означает, что если в данной точке потока газ подвергается слабому возмущению, то влияние этого возмущения распространяется только вниз по течению, так что возмущенная зона будет представлять собой вначале конус с вершиной в точке, где возникло возмущение. Для угла раствора этого конуса 2а справедливо соотношение sin а == IW, а на боковой поверхности конуса составляющая скорости газа, перпендикулярная к поверхности конуса (или, что то же самое, к линии слабых возмущений), равна местной скорости звука, т. е. Wn = с если бы это было не так, то линии слабых возмущений не занимали бы устойчивого положения. Поверхность, ограничивающую область потока, куда достигает исходящее из данной точки возмущение, называют характеристической поверх-ностью.  [c.329]

Метод решения гиперболических уравнений, использующий характеристики и условия на них, назовем методом характеристик. Этот метод широко применяется при решении задач газовой динамики в случае сверхзвуковых течений (М > 1).  [c.241]

В гл. 1—3 книги в форме вопросов и задач рассматриваются основные сведения из аэродинамики, кинематика и динамика газообразной среды, позволяющие глубоко изучить важнейшие математические модели аэродинамики (уравнения Эйлера, Навье—Стокса, неразрывности и цр.). В гл. 4 и 5 приводится необходимая информация о скачкообразных процессах и расчете параметров при сверхзвуковом течении газа (метод характеристик). Широкий круг вопросов и задач, помещенных в гл. 6—8, относится к одному из основополагающих направлений аэродинамики— теории и методам расчета обтекания профиля крыла, а также несущей поверхности как одного из элементов летательного аппарата.  [c.4]


Укажите область сверхзвукового течения около заостренного профиля с криволинейной стенкой, которая рассчитывается методом характеристик с учетом вихревого влияния (рис. 5.2).  [c.140]

При решении прямой задачи для стационарного течения газа в сопле необходимо удовлетворить условию непротекания на контуре сопла. Если в некоторой области сопла течение полностью сверхзвуковое, то для определения течения в этой области необходимо задать все искомые функции на некоторой поверхности АВ (рис. 2.4). Эта поверхность может быть произвольно ориентированной в пространстве, необходимо лишь, чтобы в каждой точке на ней скорость была больше скорости звука. Единственность решения следует из возможности однозначного построения решения методом характеристик.  [c.52]

Сверхзвуковое обтекание тел потоком газа. Опишем алгоритм расчета методом характеристик обтекания плоского или осесимметричного заостренного тела сверхзвуковым равномерным потоком (рис. 4.5, а). Примем, что начальный участок контура тела ОВ является прямолинейным. При этом течение на границе и внутри треугольника ОБА, ограниченного отрезком ОВ отрезком прямолинейной ударной волны ОА, характеристикой-первого семейства АВ, выходящий из точки В, в которой начина-  [c.125]

Генератор программ ПОТОК предназначен для расчета стационарных плоских или осесимметричных сверхзвуковых течений соверщенного газа методом характеристик. Он является подчиненным пакетом второго уровня ГАММА и входит в раздел F его библиотеки. По запросу пользователя ПОТОК генерирует программу решения конкретной газодинамической задачи из имеющихся заготовок-модулей.  [c.218]

В опубликованных работах по теплообмену при сверхзвуковых скоростях потока обычно приводятся общие дифференциальные уравнения вязкой жидкости. Затем для математического упрощения задачи используется метод Прандтля — Кармана, при котором опускается второй механизм образования тепла за счет акустической сжимаемости, т. е. по существу решаются нестационарные уравнения гидродинамики. Следовательно, задача сводится к обычной задаче теплообмена в области дозвукового течения. Однако характеристики акустической сжимаемости, скрытые в общих уравнениях гидродинамики, могут по-  [c.15]

Решение прямой задачи обтекания сплошным сверхзвуковым потоком заданной решетки (и вообще со скачками уплотнения), если такое течение возможно, может быть найдено по методу характеристик.  [c.226]

Расчет сверхзвукового течения на выходе из турбинной решетки, называемого течением в косом срезе, был дан авторами метода характеристик Прандтлем и Буземаном [127].  [c.226]

Теорема Н. Е. Жуковского (23). 1-7-2. Метод малых возмущений (23) 1-8. Плоское сверхзвуковое течение газа при постоянной энтропии. ... 24 1-8-1. Слабые волны (24). 1-8-2. Плоские волны разрежения конечной интенсивности (24). 1-8-3. Диаграмма характеристик (25)  [c.7]

Рассмотрим более общую задачу, в которой необходимо построение характеристик в поле потока. Сверхзвуковой поток движется в канале, одна из стенок которого в точке А терпит излом (рис. 5.12). Поток ограничен твердыми стенками и граничные условия заключаются в том, что на стенках задано направление скорости. В точке Л возникнет центрированная волна разрежения, в которой поток повернет на заданный угол б до направления АВ. Для расчета методом характеристик разобьем весь поворот на п элементарных поворотов с углами б/н. Для наглядности построения выберем я = 3. Центрированная волна разрежений изображается в диаграмме характеристик линией 1234, а в плоскости течения — тремя элементарными волнами. Эти элементарные волны, идущие из точки А, построены как нормали к участкам 12, 23 и 34. Вектор скорости после первой элементарной волны изображается в диаграмме характеристик отрезком 02 н, следовательно, не параллелен нижней стенке. Первая элементарная волна в точке С отражается от твердой стенки. Отраженная волна изображается в диаграмме характеристик кривой 25 и вектор 05  [c.110]

Вблизи узкого сечения точность расчета первого участка сопла методом характеристик недостаточна. Профиль стенки поэтому подбирают, начиная с некоторого начального сечения, где течение уже сверхзвуковое. В некоторых случаях начальный участок сопла выполняют коническим. Угол конусности Yo выбирается в зависимости от заданного значения li. Длина второго вогнутого участка профиля, а следовательно, и всего сопла существенно зависит от способа профилирования начального участка ААп- Минимальную длину при заданном значении М[ имеет сопло, начальный участок которого AA . стянут в точку рис. 8.15,в). В его минимальном сечении, т. е. в угловых точках АА, возникают центрированные волны разрежения, что сокращает длину разгонного участка HL. Сопла с угловыми точками строят для больших скоростей.  [c.231]

Метод характеристик, основы которого применительно к потенциальным течениям изложены в п 1.12.5, имеет широкую область применения. Так, с соответствующими изменениями он применим для осесимметричных потенциальных течений [43]. Для плоских и осесимметричных вихревых течений уравнения сверхзвукового потока газа обладают тремя семействами характеристик, одно из которых есть семейство линий тока. Дифференциальные соотношения на характеристиках в конечном виде для этих случаев не интегрируются, и тогда эффективным методом расчета является конеч-но-разностный метод, ориентированный на применение ЭВМ. Изложение основ такого метода использования характеристик можно найти в [6, 17].  [c.77]


Известно [8], что при небольшой интенсивности скачков и при условии, что источниками возмущения являются только обтекаемая линия тока (в нашем случае — поверхность раздела между дозвуковым и сверхзвуковым потоками) и подходящие к ней из бесконечности скачки уплотнения, течение в сверхзвуковой области можно приближенно (с точностью до членов второго порядка относительно интенсивности скачков включительно) представить в виде простых волн (течений Прандтля-Майера), отделенных друг от друга скачками уплотнения. В [8] дается аналитический метод расчета таких течений, включающий и определение формы скачков. В течении Прандтля-Майера все характеристики потока — давление, плотность, величина скорости и угол ее наклона к некоторому фиксированному направлению — могут быть выражены через одну из них независимо от конкретного вида течения, если известны условия в какой-либо точке, например, в бесконечности. В частности, можно указать связь между давлением и углом наклона вектора скорости на той линии тока сверхзвукового течения, которая отделяет его от дозвукового слоя (в задаче 2 эта связь различна до и после падающего скачка).  [c.57]

Для экспериментальных исследований создавались все более мощные сверхзвуковые трубы, в конце 40-х годов стал применяться новый тип труб — ударные трубы (первые эксперименты проведены в США в 1949 г.), получившие всеобщее признание в 50-х годах. Усовершенствование оптического метода позволило получать более четкие картины течений, проследить процесс появления скачков уплотнения, уточнить структуру течения. Экспериментальные исследования в значительной мере способствовали выяснению причин появления скачков уплотнения, условий устойчивости ударных волн, структуры ударной волны, характера взаимодействия скачков, характера потока за скачком. Эти вопросы подверглись и теоретическому изучению. В 1939 г. А. Е. Донов предложил аналитическое решение задачи о вихревом сверхзвуковом течении. Он исследовал такое течение около профиля, рассматривая некоторые комбинации дифференциальных уравнений характеристик, а также выражения для дифференциала функции тока. Затем А. Ферри (1946) с помощью метода последовательных приближений определил систему характеристик уравнения движения для вихревого сверхзвукового течения, составленного Л. Крокко в 1936 г. Пример точного решения плоской вихревой задачи газовой динамики привел И. А. Кибель (1947), это ре-  [c.326]

Изучение проблемных вопросов сверхзвуковой аэродинамики шло параллельно с разработкой методов, пригодных для практического расчета различных случаев сверхзвуковых течений. Одним из основных рабочих методов был классический метод характеристик. С созданием электронно-вычислительных машин главный его недостаток — трудоемкость вычислений — был снят, что значительно расширило область применения метода. Однако и раньше пытались упростить метод характеристик достаточно простой метод интегрирования уравнения характеристик (характеристики одного из семейств заменялись параболами) разработал А. А. Дородницын (1949), линеаризованный метод характеристик (обобщение метода расчета двумерных течений) предложил А. Ферри (1946). Оба метода использовались в случаях осесимметричного обтекания тел вращения.  [c.328]

Этапы коррекции этого профиля отражены на рис. 1, б-г. Па РИС. 1, б представлены изомахи, отвечающие его обтеканию композитным газом при использовании фиктивного газа с /3 = 4. В закритической области изомахи даны через АМ = 0.1. Па рис. 1, в при десятикратном уменьшении числа характеристик каждого семейства, нарисована характеристическая сетка, получающаяся в процессе расчета сверхзвукового течения методом характеристик. Там же сплошной кривой и штрихами изображены участки контуров исходного и суперкритического профилей. По сравнению с исходным площадь продольного сечения суперкритического профиля уменьшилась на 6.4%. Рис. 1,8 дает найденное установлением поле чисел Маха, по-  [c.259]

Анализируются приближеяные методы расчета параметров сверхзвуковых струй, истекащих в вакуум. Развит приближенный метод определения угла наклона линий тока и чисел Маха в точках сверхзвуковой, осесимметричной струи, достаточно удаленных от среза сопла. Метод основан на использовании результатов расчетов параметров струй методом характеристик и известных закономерностей одномерного течения газа.Приводится сравнение с расчетами по методу характеристик.  [c.143]

Эти характеристики для сверхзвукового потока являются действительными, и для решения приведенных выше уравнений можно воспользоваться методом характеристик, предложенным Зауером [679]. Условия в околозвуковой области вблизи горла сопла получены путем экстраполяции метода Зауера. По-видимому, с учетом последних исследований, упомянутых в разд. 7.2 и 7.3, можно получить точное решение для этой области. Как и раньше, следует использовать квазинепрерывное представление среды с ограничением, согласно которому характеристики существуют только при М 2 > 1. Сверхзвуковые течения газа с частицами рассматриваются также в работах Крайбела [439], посвященной косому скачку уплотнения, и Моргенталера [553] об угле наклона ударной волны на клине, обтекаемом потоком газа с частицами. В работах [671, 678[ исследован метод характеристик в применении к двухфазному потоку.  [c.344]

Г. Ф. Б у р а г о [6], а при исследовании обтекания профиля сверхзвуковым потоком — мето до.м, сочетающим теорию косых скачков уплотнения и течения Прандтля — Майера (для профи ля крыла в р.иде тонкой пластины и для линейных профилен), и методом характеристик (для криволинейных профилей).  [c.172]

В течение ряда лет метод характеристик является одним из основных для численного решения задач газовой динамики. В основном его применяют для расчета двумерных сверхзвуковых и одномерных стационарных течений газа. Реже этот метод используют для расчета пространственных стационарных и двумерных нестационарных течений. Важное свойство метода характеристик состоит в том, что он может быть использован не только для расчета течения нереагирующего газа с постоянным показателем адиабатьс, но и течений с физико-химическими пре-  [c.111]

Вопрос интегрирования нелинейных уравнений (47.17) для общего случая течения газа при 1г Ф onst почти не изучен. Известно распространение метода характеристик для решения этого уравнения применительно к сверхзвуковым течениям в турбомашинах [1051,  [c.344]

В нелинейной постановке при установившемся обтекании сверхзвуковым потоком плоских контуров и тел врагцения с образованием ударных волн точные решения получены лишь для случаев обтекания клина и кругового конуса [5]. Основным средством расчета таких течений в обгцем случае при умеренной и большой интенсивности ударных волн является численный метод характеристик и различные его у пройденные модификации, связанные часто с трудно контролируемыми допундениями.  [c.38]

Та часть исследования Прандтля и Майера, в которой применяется метод годографа, была использована Л. Прандтлем и А. Буземаном для создания графического способа построения сверхзвуковых течений, названного методом характеристик. Эта фундаментальная работа опубликована в 1929 г. Оказалось, что для уравнения сверхзвукового плоского течения газа характеристиками служат линии Маха. Тогда соотошение, представляющее условие совместности (для характеристик), интегрируется, что дает уравнение характеристик (в виде эпициклоид) в плоскости годографа, соответствующих характеристикам в физической плоскости.  [c.316]


Развитие приближенного метода Чаплыгина и, в частности, решение задачи о циркуляционном обтекании профиля сжимаемым потоком обусловили в значительной степени успех теории решеток, находящихся в потоке газа, которую можно рассматривать как обобщение теории обтекания профиля крыла. Именно использование приближенного метода Чаплыгина позволило исследовать дозвуковое обтекание решеток. Б этом направлении во второй половине 40-х годов были выполнены значительные работы (Л. И. Седов, Г. Ю. Степанов, Линь Цзя-цзяо, Дж. Костелло). Укажем, что расчет чисто сверхзвукового течения в решетках производится преимущественно по методу характеристик Прандтля — Вуземана, а теория смешанного до-и сверхзвукового течения до настоящего времени не разработана.  [c.322]


Смотреть страницы где упоминается термин Сверхзвуковые течения. Метод характеристик : [c.343]    [c.137]    [c.126]    [c.123]    [c.112]    [c.605]    [c.444]    [c.225]    [c.176]    [c.273]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Сверхзвуковые течения. Метод характеристик

Газовая динамика  -> Сверхзвуковые течения. Метод характеристик



ПОИСК



Л <иер сверхзвуковой

Метод характеристик

Метод характеристик для решения задач осесимметричного сверхзвукового вихревого течения газа

Плоский сверхзвуковой поток. Общие свойства характеристик. Графический метод расчета сверхзвуковых течений

Сверхзвуковое течение и характеристики

Течение сверхзвуковое

Характеристики сверхзвукового

Характеристики течения



© 2025 Mash-xxl.info Реклама на сайте