Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общий метод определения функции напряжений

ОБЩИЙ МЕТОД ОПРЕДЕЛЕНИЯ ФУНКЦИИ НАПРЯЖЕНИЙ 267  [c.267]

Общий метод определения функции напряжений  [c.267]

Решение в рядах по функциям нагружения. Упомянутые выше и не рассматриваемые в классической тео,рир балок методы определения перемещений и напряжений являются довольно трудными.Другой тип решения, который особенно удобен для нахождения наиболее существенных поправок к классической теории, состоит в представлении прогибов и напряжений для прямоугольного поперечного сечения балок с непрерывными нагрузками в виде рядов по функциям, описывающим распределение нагрузки по верхней и нижней поверхностям балки ). В Подобных рядах первые -члены дают величины, соответствующие классической теории балок, следующие члены представляют собой наиболее существенные поправки к ним и содержат производные высших порядков от функции нагружения (т. е. детали, уточняющие характер изменения нагрузки), следующие далее члены содержат производные еще более высоких порядков и т. д. Вычисление всех членов ряда позволяет в пределе получить точное решение уравнений теории упругости для плоского напряженного состояния. Это, по существу, является применением общего метода последовательных прибли ний.  [c.163]


Решение задачи о распространении пластичности от трещины при растяжении в условиях плоской деформации гораздо более трудное, так как необходимы допущения, связанные со стеснением течения при росте пластической зоны. Основные принципы, лежащие в основе численных решений, описаны в разделах 16 и 17 гл. III. В следующем разделе будут рассмотрены альтернативные методы определения распределения упругих напряжений с помощью функций напряжения. Будет показано, каким образом могут быть удовлетворены общие граничные условия.  [c.70]

Если комплексные функции напряжений известны, то действительная и мнимая части соотношений (6.3) дают реальные физические величины, т. е. напряжения и перемещения. Для определения комплексных функций напряжений привлекаются общие теоремы теории аналитических функций, причем важным вспомогательным средством при расчетах являются так называемые интегралы типа Коши. Решения получаются частично элементарным способом, частично сводятся к сложным интегральным уравнениям. Для многих задач способ комплексных функций напряжений может рассматриваться как прямой метод решения.  [c.121]

Известны многочисленные частные решения уравнения (8.29) каждое из которых соответствует определенному напряженному состоянию, удовлетворяющему уравнениям равновесия и совместности. Основная трудность при построении решения состоит в подборе функций, удовлетворяющих граничным условиям. Наложением их были решены многочисленные задачи теории упругости, имеющие большое практическое значение. Впрочем, следует заметить, что общего решения бигармонического уравнения не существует и отсутствуют также общие методы его решения. Существенное продвижение дает способ комплексных функций напряжений Колосова, который подробно обсуждается в 8.4.  [c.198]

Способ, изложенный в предыдущем пункте, можно развить в виде общего способа неопределенных коэффициентов с тем, чтобы применить его к областям с произвольной границей и отверстиями, если имеется подходящая функция, осуществляющая конформное отображение. В общем случае этот способ очень трудоемкий, особенно для определения второй комплексной функции напряжений, и может быть заменен более общими методами теории аналитических функций. Однако для пластины  [c.246]


Вместе с тем использование интегральных соотношений между напряжениями и скоростями деформации, записанных в матричной форме, позволяет решить другую проблему — линеаризовать краевую задачу. Действительно, в общем случае ядра R i, т) и Ro t т)— функции инвариантов тензоров (девиаторов) напряжений, скоростей деформаций, температуры, степени деформации. Однако, организовав итерационный процесс при численном решении краевой задачи на ЭВМ, можно в каждой очередной итерации считать, что эти величины определены предыдущим приближением. В этом случае определяющие уравнения становятся линейными. Применяя проекционно-сеточные методы решения краевых задач, в конечном счете приходим к линейной системе алгебраических уравнений для определения искомых параметров.  [c.259]

Отметим, что равномерное давление, распределенное по части FD мембраны, статически эквивалентно давлению той же величины, равномерно распределенному по пластинке D, а растягивающие усилия в мембране, действующие вдоль границы этой пластинки, находятся в равновесии с равномерной нагрузкой на пластинке. Следовательно, в рассматриваемом случае может использоваться тот же экспериментальный метод с мыльной пленкой, что и раньше, так как замена части мембраны FD пластинкой D не вызывает изменений в конфигурации и в условиях равновесия остальной части мембраны. Рассмотрим теперь более сложный случай, когда границы отверстия уже не являются траекториями иаирял ений для сплошного вала. Из общей теории кручения мы знаем (см. 104), что вдоль каждой границы функция напряжений должна быть постоянной, однако эти постоянные не могут выбираться произвольно. При рассмотрении многосвязных границ в двумерных задачах было показано, что в подобных случаях необходимо обраи1,аться к выражениям для перемещений, и постоянные интегрирования следует подбирать таким образом, чтобы эти выражения становились однозначными. Аналогичная процедура необходима и по отношению к задачам о кручении полых валов. Постоянные значения функции напряжений вдоль границ следует определять таким образом, чтобы перемещения были однозначными. Тогда будет получено достаточное число уравнений для определения  [c.335]

Уильям Роуан Гамильтон, видный ирландский математик, в статьях Об общем методе динамики , написанных в 1834—1835 гг., для определения движения вводит новые переменные и новые функции, формулируя общий принцип наименьшего действия. "При этом главная функция, зависящая от начальных и конечных координат и времени, равна сумме живых сил (Г) и сил напряжения (Я). Последние, называемые силовой функцией, для стационарных, то есть не изменяющихся во времени, консервативных систем (механических систем, при движении которых сумма Т- П постоянна), выражают полную энергию системы.  [c.117]

Методы, описанные выше, были использованы в последние годы многими исследователями [35, 36, 63—66], чтобы преодолеть некоторые недостатки, присущие методу определения КР на гладких образцах по времени до разрушения. Дополнительно к методу определения Кхкр может быть применен фрактографиче ский анализ начальной стадии роста трещины. Более удобная и точная техника измерения скорости роста трещины как функции коэффициента интенсивности напряжений в конце трещины рассматривается в общих чертах в следующем разделе.  [c.170]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]


Подставляя ряд (1.4) в уравнение Больцмана и приравнивая коэффициенты при равных степенях получают рекуррентную систему уравнений для определения и т. д. При построении решения методом Знскога — Чепмена /<°) " /о функция выражается через производные от гидродинамических величин п, и и Т и т. д. Зная функции можно выписать любые гидродинамические (макроскопические) величины в частности, это позволяет выразить тензор напряжений и вектор потока тепйа через п, ии Т и их производные. Заменяя в общих уравнениях сохранения тензор напряжений и вектор потока тепла через гидродинамические величины, при оставлении в ряде (1.4) одного члена получим уравнения Эйлера, при двух — уравнения Навье—Стокса, при трех—уравнения Барнетта и т. д. ). Важно отметить, что кинетическая теория позволяет не только найти связи между тензором напряжения и вектором потока тепла и производными от гидродинамических величин, но и выразить входящие в эти связи коэффициенты пропорциональности (коэффициенты переноса) через известные свойства молекул. Этот метод используется для определения коэффициентов вязкости, теплопроводности и других переносных свойств газов и газовых смесей в широком диапазоне давлений и температур, для которых чрезвычайно трудно получить экспериментальные значения.  [c.426]

При использовании метода колло-кации (т. е. удовлетворении определенным условиям в отдельных точках) функцию напряжений можно принять в том же виде (7.5). Она может быть представлена соответственно любому из двух упомянутых вариантов. Удобно выбирать функции (р(х, у) так, чтобы они удовлетворяли всем граничным условиям, тогда постоянные параметры а, находятся с использованием уравнения равновесия (7.4). В этом случае функцию (7.5) в ее общем виде подставляют в уравнение равновесия (7.4) и в полученное после  [c.99]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]


Аоки и др. [32] представили метод на основе сингулярного элемента, в котором учтены движение тела как жесткого целого и собственная функция, соответствующая полю сингулярных напряжений движущейся трещины [т. е. в уравнении (2.7) п = 0 и 1]. По сингулярному элементу трещина перемещается до тех пор, пока она не доходит до точки В, отмеченной на рис. 3(b). После этого сингулярный элемент скачком меняет свое положение, как показано в нижней части рис. 3(b). В первоначальной версии метода [32] перемещения сингулярного элемента были согласованы с перемещениями окружающих его обычных треугольных элементов только в общих узлах. В поздней версии (33) межэлементная совместимость перемещений была обеспечена за счет использования модифицированного принципа виртуальной работы. Поскольку размеры элемента, описанного в [32, 33], как правило, значительно больше области, в которой справедливо сингулярное решение, при определении коэффициентов интенсивности напряжений могут появиться заметные погрешности. Отсутствие поля постоянных напряжений [п=2 Б (2.6) и полей напряжений более высокого порядка [п З в (2.6) ограничивает применимость подобных элементов для изучения физических задач, представляющих интерес, например задач о ветвлении трещины и т. п.  [c.285]

Для определения общей потенциальной энергии деформируемой системы, обусло1зленной действием изгибающих и крутящих моментов, введена конечно-разностная схема с пересекающейся сеткой. Использование этой схемы дозволяет уменьшить погрешность аппроксимации выражений для потенциальной энергий деформации, вызванной крутящим моментом, с помощью конечно-разностных соотношений, и, кроме того, исчезает необходимость введения фиктивных узлов в граничной области. Узловые подобласти, используемые в этом методе, дают возможность получить приближенные конечные суммы, базирующиеся на значениях функций в узлах сетки, покрывающей определенным образом рассматриваемую пластинку. Выражение потенциальной энергии деформации для граничных узловых подобластей соответственно изменяется таким образом, чтобы удовлетворялись граничные условия для изгибающего момента и чтобы обеспечивалась возможность применения центральных конечных "разностей в районе границ. Дополнительные граничные условия для напряжений удовлетворяются автоматически в процессе минимизации, приводящей к конечно-разностным соотношениям, подобным тем, которые получаются при прямом использовании метода конечных разностей, но без применения фиктивных узлов, лежащих за границей пластинки.  [c.115]

Для таких общих граничных условий затруднено решение задач при помощи принципов возможных изменений деформированного и возможных изменений напряженного состояния. Уравнения этих принципов не удается выразить первое только в скоростях, а второе — в напряжениях. Правда, из этого правила есть исключение, функционал (3.20) выражается только через скорости, если силы трения заданы по второй формуле (3.6), как известная доля от т,. им исключением определяется тот успех, который имеет применение вариационных принципов в теории обработки металлов давлением. Можно заметить, что во всех решенных вариационными методами задачах теории обработки металлов давлением по определению деформированного состояния, использовано условие трения х = 113X5 ( ф — известная величина). И это не случайно. Если усложнить условие трения, приняв его по первой формуле (3.6) в виде х = р, как вариационный принцип возможных изменений деформированного состояния не позволит определить поле скоростей, так как в (3.20) войдет неизвестная функция р.  [c.86]

В большинстве случаев при расчете применяемых на практике оболочек моментами сил напряжений, действующих на поперечные площадки нельзя пренебречь. Иногда они даже превалируют над результирующими силами — усилиями. Ниже мы распространим методы мембранной теории на более общие краевые задачи. Для этой цели в первой главе мы применим к расчету упругих оболочек метод нормированных моментов поля напряжений (соответствующие определения будут даны ниже). В ряде случаев это приводит к системам уравнений мембранной теории и бесконечно малых изгибаний поверхностей. Этим методом решается класс задач, которые возникают при рассмотрении равновесия оболочек, подчиненных так называемым втулочным связям (см. [2а], гл. 5, 8,,п. И). Ниже (>л. I, 7, п. 10) мы дадим опреде-ленде втулочных связей и сформулируем соответствующие краевые условия. Заметим, что для выпуклых оболочей зта задача приводит к обобщенному уравнению Коши—Римана и можно применять методы теории обобщенных аналитических функций [2а].  [c.11]


Смотреть страницы где упоминается термин Общий метод определения функции напряжений : [c.102]    [c.444]    [c.173]    [c.7]    [c.326]    [c.246]   
Смотреть главы в:

Прочность и колебания элементов конструкций  -> Общий метод определения функции напряжений



ПОИСК



Метод напряжений

Метод общий определения напряжений

Метод функции напряжений

Методы функций

Напряжение Определение

Напряжение функция напряжений

Напряжения Определения метода

Общие определения

Общий метод

Определение функций напряжений

Функция напряжений

Я-функция, определение



© 2025 Mash-xxl.info Реклама на сайте