Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод функции напряжений

Задача б) выше была решена методом функции напряжений, здесь эта же задача решается методом функции комплексного переменного. В задаче б) главные векторы и главные моменты сил, приложенных на каждой из границ г=г и г=гг, в отдельности равны нулю. На основании формул (6.100) и (6.101) и для этой задачи функции ф(г) и г з(2) являются внутри кольца голоморфными и определяются из условий (6.163), здесь /(/]), /(/г) принимают вид  [c.147]


Метод функции напряжений  [c.445]

В качестве приложения метода функции напряжений рассмотрим задачу о напряженно-деформированном состоянии треугольной подпорной  [c.445]

Метод функции напряжения Буссинеска.  [c.414]

Сущность метода функции напряжений, используемого для решения упругих задач, заключалась в выборе подходящей алгебраической или тригонометрической функции двух переменных Хх, или г, 0), удовлетворяющей условию совместности (V ) = О, из которого получаются напряжения, удовлетворяющие граничным условиям. Чтобы использовать этот метод при расчете напряжений у трещины, удобно функцию напряжений выбрать в виде комплексной функции двух переменных, что упрощает математические выкладки.  [c.47]

В части книги, излагающей теорию оболочек, мы ограничились добавлением метода функции напряжений в мембранную теорию оболочек и некоторыми незначительными добавлениями в теорию изгиба оболочек вращения.  [c.10]

Метод функции напряжений при изгибе.  [c.278]

Легко видеть, что если бы величина А была комплексной, то компоненты напряжений и радиальный компонент перемещения не изменялись и имело бы место только чистое вращение. Эти результаты одинаковы с теми, которые следуют из соотношений (31.5) и (31.6), полученных методом функции напряжений.  [c.102]

Из последнего параграфа было видно, что затруднения при отыскании решения, связанные с методом функции напряжений, облегчаются вследствие использования комплексного потенциала и соответствующего конформного преобразования однако наибольшее преимущество от использования комплексного потенциала получено благодаря методам, развитым Мусхелишвили ), позволяющим определять потенциалы непосредственно по граничным условиям. Эти методы применимы к телу, занимающему в плоскости Z односвязную область, конечную или бесконечную, которую можно отобразить с помощью конформного преобразования на круг или полуплоскость исследование многосвязных областей значительно сложнее и обсуждаться здесь не будет. Области, отображенные на круг или на полуплоскость, можно исследовать двумя методами первый основан на использовании обычных интегралов Коши, второй основан на более тонких свойствах интегралов Коши. Второй метод наиболее при-  [c.104]

Развитый здесь метод функций напряжения для плоского случая может быть применен также и для пространственных задач. При этом существенно то, что уравнения равновесия для составляющих напряжения  [c.117]

Для решения задачи воспользуемся обратным методом, приняв для функции напряжений выражение (7.21). Тогда напряжения с учетом (7.40) определятся по формулам (7.22)  [c.140]


Рассматриваемую задачу решаем обратным методом. Примем функцию напряжений в виде (7.76). Напряжения определятся формулами (7.77). Граничные условия задачи имеют вид  [c.158]

Расчет гибких пластин и оболочек сводится к решению нелинейной системы дифференциальных уравнений, записанных относительно прогиба и функции напряжений. С помощью вариационных методов, метода конечных разностей и т. д. указанные уравнения заменяются  [c.285]

Рассмотрим первую основную задачу для конечной односвязной области. Так как искомые аналитические функции ф(г) и i j(z) однозначны в данной области S и упругие постоянные Я и х не входят в граничное условие (6.109), то решение этой задачи, даваемое функциями ф(2), -113(2), не зависит от упругих постоянных X и Х, иначе говоря, при заданных внешних силах на границе конечной односвязной области напряженное состояние в заполняющем ее теле не зависит от упругих свойств материала. Для конечной многосвязной области решение, определяемое функциями ф(г), я з(2), зависит от материала среды. Чтобы решение, определяемое функциями ф(2), 1 з(2), не зависело от упругой постоянной ус, главные векторы сил, приложенных к каждому из контуров Lh, как это следует из формул (6.100), (6.101), должны быть в отдельности равны нулю. Именно в этом случае напряженное состояние не зависит от упругих постоянных тела. Этот результат и составляет теорему Мориса Леви, лежащую в основе метода нахождения напряженного состояния в каждой точке изотропной однородной среды на мо-  [c.132]

Применять функцию напряжений, называемую также силовой функцией, или по имени предложившего ее автора, функцией Эри, весьма полезно при решении задач обратным или полу обратным методом.  [c.37]

Таким образом, вместо решения уравнения Пуассона (7.33) при граничном условии (7.13) функция напряжений Ф, минимизирующая функционал может быть приближенно определена одним из прямых методов вариационной задачи кручения при выполнении граничного условия (7.13).  [c.179]

Решая задачу методом Канторовича, будем искать функцию напряжений Ф ( 1, дса) в виде  [c.182]

Функцию напряжений Ф х , дс ), минимизирующую функционал Т, можно приближенно найти одним из прямых методов вариационной задачи изгиба при выполнении граничного условия (8.9).  [c.221]

В анизотропных телах положение осложняется в тех случаях, когда анизотропия криволинейна. Например, цилиндр, изготовленный из стеклопластика или углепластика путем намотки, ортотропен, но упругие свойства его обладают цилиндрической симметрией, в цилиндрических координатах модули упругости и коэффициенты температурного расширения постоянны. Но при переходе к декартовым координатам тензоры Ei и а будут уже не постоянными, а функциями координат Ха, поэтому даже равномерное температурное ноле вызовет напряжения. Эта задача легко решается методом, совершенно подобным тому, который был применен в 8.12 для трубы из изотропного материала. Присваивая радиальному направлению индекс единицы, мы запишем уравнение упругости в форме (10.6.4). Теперь уравнение для функции напряжений оказывается следующим  [c.385]

Полуобратный метод Сен-Вена на. При решении задачи этим методом делают допущения, о виде некоторых из функций напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых трудностей. Полуобратный метод является одним из наиболее эффективных методов решения задачи теории упругости.  [c.49]

К данным уравнениям следует добавить граничные условия (20). Обычный метод решения этих уравнений состоит во введении некоторой новой функции, называемой функцией напряжений i). Как легко проверить, уравнения (а) удовлетворяются, если ввести некоторую функцию ф от л и у, которая связана с компонентами напряжения следующими зависимостями  [c.50]


Представляют интерес сами по себе, нам нужен метод отыскания функций перемещений и и v при заданной функции напряжений.  [c.186]

Показать, что метод, указанный в задаче 7, дает для узкого эллиптического сечения приближенное значение функции напряжений по формуле  [c.355]

Программа должна реализовать тот или иной из основных методов решения таких систем уравнений. Метод релаксации для машинных вычислений не вполне пригоден. С применением ЭВМ можно использовать прямые методы, например метод гауссовых исключений или правило Крамера, однако число рассматриваемых уравнений при этом остается весьма ограниченным. В то же время итерационные схемы позволяют эффективно решать системы с несколькими тысячами неизвестных, если матрица системы уравнений обладает определенными свойствами. Последнее требование делает более удобным решение задач в перемеш,е-ниях, а не в функциях напряжений.  [c.550]

Для решения основного дифференциального уравнения плоской задачи можно применить метод разделения переменных, представив функцию напряжений ф в виде произведения двух функций /(у) и ф(з ), каждая из которых зависит только от одного аргумента. Если при этом функцию 11з(д ) представить в виде ряда по синусам или косинусам, то бигармоническое уравнение можно преобразовать в обычное линейное однородное дифференциальное уравнение, решение которого хорошо известно.  [c.84]

С граничными условиями (44в) и (46). Существуют два метода получения искомого решения — с помощью функции напряжений и функции кручения (или перемещения). Оба эти метода рассмотрены ниже.  [c.30]

Как обсуждалось в разд. IV, А, реализация точных методов обычно требует применения численных методов различных типов. В ранних работах, не обязательно относящихся непосредственно к исследованию композиционных материалов, широко использовался метод конечных разностей до тех пор, пока в обиход не вошел метод конечных элементов. Отметим, что метод конечных разностей был одной из немногочисленных попыток применить прямую аппроксимацию функции напряжений.  [c.223]

Отметим, что в предложенном здесь методе функция напряжения является бигармонической как в упругой, так и в пластической зонах. Однако это существенное ограничение, как показал Е. П. Па-расюк [70], иногда может быть снято.  [c.259]

При методе конечных разностей ([5], гл. XXVIII) заданную систему с помощью сеток разделяют на отдельные элементы, составляют конечно-разностные уравнения и определяют значение искомой функции (перемещения, функции напряжений и т. д.) в узлах сетки.  [c.15]

Рассмотрим особенности применения метода конечных разностей в плоской задаче на примере использования функции напряжений (см. 4.4). В этом случае задача сводится к решению уравнения совместности деформаций в виде бигармо1гического уравнения  [c.235]

При решении задачи методом Ритца функцию напряжений следует искать в следующем виде  [c.183]

Для изотропного тепа X = 0, x = v и формула (10.6.9) дает равные корни, следовательно, р = q = i и представление функции напряжений в виде (10.6.10) перестает быть.справедливым. Таким образом, случай изотропии — вырожденный, требующий особого исследования. Это исследование было выцолнено другим методом в 10.1, поэтому мы только наметим основную, идею вывода тех же формул, отправляясь от бигармонического уравнения  [c.344]

Система уравнений (12.10.3), (12.10.5) и (12.10.6) описывает деформацию пластины с большими прогибами. Эти уравнения называются уравнениями Кармана. Вывод соответствующих уравнений для анизотропных пластин не встречает никаких затруднений, выписывать эти довольно громоздкие выражения мы здесь не будем. Система оказывается нелинейной, поэтому известны только численные решения ее для отдельных частных случаев путем непосредственного отыскания стационарного значения функционала (12.10.2) по способу, аналогичному тому, зшторый был описан в 12.9. Сложность состоит в том, что коэффициенты в предполагаемом выражении для прогиба w или функции напряжений F теперь ищутся из нелинейных алгебраических уравнений. Для симметричной деформации круглой пластинки уравнения (12.10.2) и (12,10,6) становятся обыкновенными дифференциальными уравнениями, которые можно интегрировать любым численным методом.  [c.413]

При рассмотрении частных задач в большинстве случаев применяется метод прямого определения Ешпряжений с нспользоиа-пием уравнений совместности деформаций в напряжениях. Этот метод более привычен для инженеров, которые обычно интересуются величиной напряжени . При введении соответствующим образом подобранной функции напряжений этот метод, кроме того, является часто более простым, чем использование уравнений равновесия в перемещениях.  [c.17]

В качестве простой иллюстрации этого метода рассмотрим [юлиномиаль-Н5 Ю систему напряжений, обсуждавшуюся на стр. 55—56. Функцию напряжений в виде полинома пятой стспени, очевидно, можно получить из соотношения (85), если положить  [c.189]

Треффц ) предложил другой метод приближенного определения функции напряжений ф. По его методу приближенная величина крутящего момента оказывается больше точного значения. Следовательно, используя совместно методы Треффца и Ритца, можно установить границы погрешности приближенного решения.  [c.325]

При использовании приближенного метода Ритца мы не обязательно должны пользоваться полиномами (в). Мы можем взять функции ф , ф , фз,. . ., входящие в ряд (а) и в других фэрмах, удобных для представления функции напряжений ф. Используя, например, тригонометрические функции и учитывая условия симметрии (рис. 163), получаем  [c.325]


Отметим, что равномерное давление, распределенное по части FD мембраны, статически эквивалентно давлению той же величины, равномерно распределенному по пластинке D, а растягивающие усилия в мембране, действующие вдоль границы этой пластинки, находятся в равновесии с равномерной нагрузкой на пластинке. Следовательно, в рассматриваемом случае может использоваться тот же экспериментальный метод с мыльной пленкой, что и раньше, так как замена части мембраны FD пластинкой D не вызывает изменений в конфигурации и в условиях равновесия остальной части мембраны. Рассмотрим теперь более сложный случай, когда границы отверстия уже не являются траекториями иаирял ений для сплошного вала. Из общей теории кручения мы знаем (см. 104), что вдоль каждой границы функция напряжений должна быть постоянной, однако эти постоянные не могут выбираться произвольно. При рассмотрении многосвязных границ в двумерных задачах было показано, что в подобных случаях необходимо обраи1,аться к выражениям для перемещений, и постоянные интегрирования следует подбирать таким образом, чтобы эти выражения становились однозначными. Аналогичная процедура необходима и по отношению к задачам о кручении полых валов. Постоянные значения функции напряжений вдоль границ следует определять таким образом, чтобы перемещения были однозначными. Тогда будет получено достаточное число уравнений для определения  [c.335]

При таком выражении для f (у) первый сомножитель в правой части уравнения (183) вдоль параболической части контура обращается в нуль. Множитель dyjds обращается в нуль вдоль прямолинейной части границы. Таким образом, мы снова получаем, что функция напряжений на границе постоянна и задачу можно рассмотреть с помощью энергетического метода.  [c.374]

Для решения конечно-разностных уравнений (36) методом итераций примем некоторые начальные значения функции напряжения ф , фз,. .. Ф15. Подставляя их в уравнения (36), получим остаточные усилия для всех внутренних точек, которые можно затем устранить методом релаксации. Соответстнуюш,ая  [c.545]

Значения Гт и й, определяемые выражениями (2.13) и (2.16), являются приближенными, заниженными, что следует из более точного решения на основе модели В. В. Панасюка —Д. Даг-дейла, представленной на рис. 2.4. При напряжениях а в вершине трещины протяженностью 2/ образуются участки длиной Гт пластической деформации, в пределах которых местные напряжения будут а=стт- Упругопластическое решение задачи для рассматриваемой пластины получается на основе решения двух упругих задач для двух пластин с длиной трещины 2/т. Упругие решения методом функции комплексного переменного для первой пластины с трещиной 2/т, равномерно растянутой напряжениями сг, и для второй пластины с трещиной протяженностью 2/т, нагруженной на участках Гт напряжениями сгт, при наложении позволяют получить более точное значение для г  [c.31]

Начало интенсивных исследований в Англии относится к 40-м годам и связано с публикацией серии работ Грина и Тейлора [23, 24], Грина [15—22] и Холгата [30]. Подход, развитый в ранних работах [15, 23], предусматривал введение функции напряжений Эри по схеме, первоначально использованной Мичелом [39] для изотропной среды. В более поздних работах этой серии Грин использовал метод комплексных переменных, впервые предложенный Стивенсоном [58], публикация/статьи которого задержалась из-за второй мировой войны. Несмотря на то, что этот подход аналогичен методу Мусхелишвили [41], аппарат комплексных пере- менных использовался в работах английских исследователей до первого издания книги Мусхелишвили. Времени публикации статьи Стивенсона соответствует период окончательного утверждения метода комплексных переменных.  [c.15]

Сравнивая методы решения задачи кручения в напряжениях и в перемещениях, можно заметить, что оба метода обладают достоинствами и недостатками. Введение функции напряжений приводит к неоднороднойу дифференциальному уравнению в частных  [c.36]

Расчет слоистых пластин на основе уравнений трехмерной теории упругости связан с большими математическими трудностями, и число, работ, выполненных в этом направлении, сравнительно невелико. Среди,ранних работ такого рода следует отметить статью Шайла [126], который рассмотрел статическое нагружение круглой пластины из двух изотропных слоев. Он использовал метод двух функций напряжений и предполагал, что распределение модуля упругости и коэффициента Пуассона по толщине описывается произвольными (в том числе и разрывными) Фзшкциями нормальной координаты. Впоследствии Шайл [127] предложил другой метод решения этой задачи, основанный на  [c.195]


Смотреть страницы где упоминается термин Метод функции напряжений : [c.60]    [c.77]    [c.153]    [c.337]    [c.548]   
Смотреть главы в:

Сопротивление материалов и основы теории упругости и пластичности  -> Метод функции напряжений



ПОИСК



Метод комплексных функций напряжений

Метод комплексных функций напряжений в плоской задаче теории упругости

Метод напряжений

Метод функции напряжений при изгибе

Методы функций

Напряжение функция напряжений

Общий метод определения функции напряжений

Определение коэффициента интенсивности напряжений для сквозных трещин в цилиндрических оболочках с помощью весовых функций, полученных методом голографической интерферометрии

Решение плоской задачи в напряжениях. Функция напряжений Методы решения плоской задачи для прямоугольных односвязных областей

Функция напряжений



© 2025 Mash-xxl.info Реклама на сайте