Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия нагружения и напряженное Состояние деталей

УСЛОВИЯ НАГРУЖЕНИЯ И НАПРЯЖЕННОЕ СОСТОЯНИЕ ДЕТАЛЕЙ  [c.393]

Так как условия прочности (4.7) и (4.8) требуют предварительного определения напряженного состояния деталей, работающих при ползучести [10, 86], то они особенно удобны в случае статически определимых напряжений. Однако могут встречаться и такие исходные условия для расчетов на длительную прочность, когда вместо приведенных напряжений удобнее вводить деформации АеЧ" , накапливающиеся на отдельных ступенях нагружения. В таких случаях может быть использована формула  [c.106]


Изнашивание является одним из видов поверхностного деформирования и разрушения материалов, осуществляемых в условиях сложной схемы напряженного состояния. Даже при очень малых нормальных нагружениях деформация единичного контакта носит упругопластический или пластический характер. Приложение сдвигающих сил при относительном перемещении контактируемых поверхностей создает облегченные условия к пластическому оттеснению материала, нарушению сплошности адсорбированных пленок окислов и, при благоприятных условиях взаимодействия, к образованию металлических связей. Даже при ничтожно малых скоростях скольжения, когда влиянием элементов температурного поля можно пренебречь, величина остаточного оттеснения материала существенно зависит от характера движения. По этому при разработке методики и создании установок для проведения лабораторных испытаний необходимо стремиться к тому, чтобы характер движения элементов пары трения и условия взаимодействия контактирующих неровностей соответствовали или приближались к реальным условиям работы соответствующих деталей машин и механизмов.  [c.229]

Существуют различные виды изнашивания усталостное, абразивное, адгезионно-механическое, эрозионное, коррозионно-механическое и др. Интенсивность изнашивания деталей машин зависит от формы, размеров, физико-химических свойств, условий нагружения и теплового режима работы контактирующих поверхностей, а также физико-химических свойств смазочного материала. В зубчатых передачах, подшипниках качения и некоторых других механизмах при работе возникает усталостное изнашивание (выкрашивание), характерное для хорошо смазанных контактирующих поверхностей деталей машин, которые испытывают повторные контактные напряжения и работают в режимах качения и качения со скольжением. Абразивное изнашивание возникает в результате режущего или царапающего действия твердых тел и частиц. Данный вид износа типичен для механизмов, функционирующих в запыленной среде, в условиях недостатка смазки, при работе всухую. В трущиеся контакты в процессе работы попадают частицы песка, пыли, грязи, продукты износа. Интенсивность абразивного изнашивания механизмов зависит от физико-механических и геометрических характеристик абразива, его количества, прочностных свойств материала трущихся тел, действующей нагрузки, состояния смазочного слоя. В местах контакта  [c.9]


Поверхности трения деталей машин при эксплуатации претерпевают существенные изменения. Меняются размеры и геометрические характеристики, структура, свойства и напряженное состояние поверхностных слоев. Эти изменения могут иметь монотонный и резко выраженный скачкообразный характер. Они могут охватывать макро-, микро- и субмикроскопические объемы. Характер изменений в значительной мере зависит от кинематики движения (рода трения—качения или скольжения), условий механического нагружения, наличия и состава жидкой, твердой или газообразной среды, вида смазки, концентрации кислорода, материала (химического состава, структуры, механических свойств и методов обработки и т. п.). Изменения могут быть полезными, нормализующими внешнее трение и способствующими минимизации износа, или приводить к недопустимым явлениям резко выраженной повреждаемости.  [c.250]

Использование при расчетах реальных деталей результатов испытания образцов в форме тонких пластинок или ленты с имитацией трещин, и теоретических выводов по предельному напряжению Опред таких образцов затруднительна. Реальные детали отличаются от простых образцов более сложной формой и другими условиями нагружения, и, следовательно, напряженное состояние материала деталей значительно отличается от напряженного состояния в тонких пластинках и лентах. Объем напряженного материала в деталях отличается от соответствующего объема в образцах, и, наконец, дефекты, служащие очагом разрушения, в обоих случаях неодинаковы, хотя в принципе предельное состояние образцов и деталей можно оценивать на основании одних и тех же соотношений. При переходе к натурны.м деталям необходимо вводить ряд поправок, для проверки оправданности которых было выполнено большое число испытаний.  [c.411]

В первую очередь будут рассмотрены теории пластичности, после чего можно будет выполнить исследование пластических деформаций и напряженного состояния стальных деталей при объемном напряженном состоянии в условиях статического нагружения при нормальной температуре. Необходимо различать случай постоянного отношения составляющих напряжения, сохраняющего неизменное значение в процессе деформации (простое нагружение) и более сложный случай общего характера нагружения, при котором отношение составляющих напряжения от внешней нагрузки изменяется в процессе деформации.  [c.463]

Экспериментальные исследования [180, 166, 16/, 168] напряжений у корня зуба показали, что положение 1 контактной линии тп является более опасным, чем положение 2. Приведенная на рис. 158, б картина напряженного состояния зуба у его основания получена для случая равномерного распределения нагрузки по контактной линии [180]. Вследствие упругой деформации деталей передачи нагрузка обычно концентрируется к одному из торцов зубьев. Это обстоятельство способствует еще большему возрастанию напряжений изгиба у края зуба. Если считать, что у косого зуба опасным является сечение по основанию, то расчетным случаем будет положение 1 контактной линии, поскольку оно всегда соответствует максимуму напряжений изгиба у основания зуба. Если не учитывать концентрацию напряжений в переходной кривой у основания зуба, то при длине зуба Ь Ьо теоретическое опасное сечение ас располагается не по основанию, а под некоторым углом = /(Я) к основанию зуба (рис. 158, а). Можно полагать, что Б условиях статического нагружения (например, при кратковременных перегрузках) зуб будет обламываться именно по сечению ас. Наоборот, при циклическом нагружении и напряжениях, превышающих предел выносливости зубьев на излом, усталостная трещина возникает в месте максимальной концентрации напряжений, т. е. у основания зуба, и характер поломки зуба будет такой, как показано на рис. 158, в. Все сказанное относится к зубьям длиной Ь b(j. Рассмотрим теперь напряженное состояние зубьев длиной Ь < Ьо- На рис. 159 показан такой укороченный зуб с отброшенной частью — Ь. Как видно из рис. 159, край зуба дополнительно нагружается изгибающим моментом, который несла отброшенная его часть. Напрял<енное состояние косого (шевронного) зуба становится при этом более однородным, приближающимся к таковому для прямого зуба в тем большей степени, чем короче его длина и  [c.197]


При расчете изменения напряжений и деформаций в течение установившегося стабильного цикла можно получить необходимые данные для оценки термоусталостной прочности детали и изменения ее размеров за время работы. Влияние первых, нестабильных циклов также может быть учтено, но при их расчете исходят из представления о том, что до первого эксплуатационного нагружения деталь находилась в ненапряженном состоянии, что не всегда отвечает действительности. В отличие от этого, параметры стабильного цикла зависят только от типичных рабочих условий нагружения и нагрева и тем самым дают в известной мере более объективную оценку работе детали.  [c.242]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

Выносливость деталей в отличие от образцов в значительной мере зависит от одновременного действия следующих факторов 1) напряженного состояния, вызванного условиями нагружения 2) неравномерности распределения и концентрации напряжений 3) влияния абсолютных размеров, масштабного фактора 4) состояния поверхностного слоя и действия остаточных напряжений 5) влияния эксплуатационных условий (коррозии, температуры, частоты нагружения и т.д.).  [c.211]

Физическое состояние поверхностного слоя деталей и его напряженность, обусловленные механической обработкой, оказывают существенное влияние на эксплуатационные свойства и прежде всего на их усталостную прочность. Остаточные напряжения и деформационное упрочнение поверхностного слоя в условиях циклического нагружения и рабочих температур могут положительно и отрицательно влиять на сопротивление материала усталости. В связи с этим представляет большой научный и практический интерес изучение устойчивости поверхностного наклепа и остаточных макронапряжений после механической обработки в зависимости от температуры и продолжительности нагрева.  [c.131]

По ряду причин, в том числе экономического и технического характера, программные испытания натурных деталей не всегда возможны или могут быть проведены лишь в ограниченном объеме. Поэтому возникает необходимость разработки методов, позволяющих производить оценку характеристик сопротивления усталости деталей по результатам испытаний образцов. В области усталости при стационарных режимах нагружения такие методы основаны иа изучении закономерностей подобия усталостных разрушений в связи с эффектом концентрации напряжений, неоднородности напряженного состояния и величины напрягаемых объемов, с привлечением статистических представлений о природе усталостных явлений [4, 5, 18, 30]. Возможность применения этих закономерностей в условиях нестационарной нагруженности в достаточной мере не проверена и представляет одну из основных задач программных испытаний.  [c.40]

Машины для программных испытаний на усталость с кривошипным возбуждением характеризуются универсальностью и вместе с тем простотой конструкции. Такие машины предназначены для проведения испытаний при всех основных видах напряженного состояния, при постоянной силе (эластичное нагружение) и постоянном перемещении (жесткое нагружение), а также для проведения испытаний как лабораторных образцов, так и натурных деталей в нормальных и специальных условиях.  [c.107]

Силовые модели повреждений пользуются наибольшим распространением и могут быть в деталях достаточно разнообразными. Рассмотрим применение этих моделей к условиям линейного напряженного состояния. Предположим, что режим нагружения задан в виде а (т), где т — время. Зачастую вместо т могут использоваться и другие параметры, например, число циклов нагружения и даже текущая величина деформации. Однако пока  [c.66]

Эти расчеты, как уже говорилось выше, очень традиционны, и по ним разработаны рекомендации (см., например [3, 32, 33, 83, 971, обобщающие долголетний опыт проектирования и эксплуатации различных конструкций и деталей, а также огромный объем экспериментальных исследований. Однако большая часть этого материала относится к расчетам на регулярное или нерегулярное переменное нагружение при линейном напряженном состоянии или при двухпараметрическом плоском напряженном состоянии с нормальным и касательным напряжением. В значительно меньшей степени освещены вопросы расчета на усталость при других видах напряженного состояния, особенно в условиях нестационарного нагружения.  [c.118]


В отечественных Правилах Госгортехнадзора СССР, так же как и в аналогичных Правилах технадзора промышленно развитых стран, область применения материалов для изготовления объектов котлонадзора определяется по рабочему состоянию. Как известно, на детали котлов и трубопроводов пара и горячей воды Правила Госгортехнадзора СССР распространяются при условии, что давление рабочей среды (пара) в них превышает 0,07 МПа или температура воды выше 115°С. Следовательно, для определения области применимости достаточно регламентировать верхнюю границу допустимого применения по давлению и по температуре. Требования к качеству металла и полуфабрикатов также определены из условий обеспечения надежной и безаварийной эксплуатации рассматриваемых деталей при их работе, т. е. в нагруженном состоянии и прежде всего при максимально допустимых параметрах пара и горячей воды. Исключением здесь являются фланцы и детали крепежа, которые следует считать нагруженными и при отсутствии давления рабочей среды, так как в них сохраняются значительные напряжения от затяжки болтов (шпилек).  [c.64]

Из анализа данных об условиях эксплуатационного нагружения и о номинальной и местной нагруженности следует возможность оценки предельных состояний несущих элементов конструкций и выбора критериев прочности. Назначение основных размеров сечений несущих элементов должно проводиться из условий статической прочности, т. е. размеры сечений должны быть не меньше, чем по критериям статической прочности для максимальных эксплуатационных нагрузок. В расчетах статической прочности деталей машин и элементов конструкций, выполняемых по номинальным напряжениям, как правило, не учитываются местные напряжения от концентрации и местные температурные напряжения. В расчетах статической прочности используются пределы текучести и прочности, определяемые при стандартных кратковременных статических испытаниях гладких цилиндрических или плоских образцов [1, 2].  [c.11]

Максимального снижения массы можно добиться приданием деталям полной равнопрочности, т. с. чтобы напряжения в каждом сечении детали по ее продольной оси и в каждой точке этого сечения были одинаковыми. На практике такой случай возможен, если нагрузку воспринимает все сечение детали и отсутствуют резкие концентраторы напряжений (растяжение — сжатие). При изгибе, кручении или сложном напряженном состоянии (например, изгиб с кручением) напряжения в сечении распределяются неравномерно. В этих случаях удается только приблизиться к условию полной равнопрочности выравниванием напряжений по сечению, удалением металла из наименее нагруженных участков сечения и сосредоточением его в наиболее нагруженных местах — на периферии сечения.  [c.91]

Подавляющее большинство элементов энергооборудования работает в условиях сложнонапряженного состояния (объемного для толстостенных и плоского для тонкостенных конструкций), обусловленного в основном внутренним давлением рабочей среды. Напряженное состояние конструктивных элементов сложной конфигурации при теплосменах также в общем случае имеет неодноосный характер. При этом в отличие от напряженного состояния, вызванного внутренним давлением среды с постоянным соотношением главных напряжений, при теплосменах имеет место широкое варьирование соотношения компонент напряжений в зависимости от преобладающего для данного элемента вида термоциклического нагружения (растяжение, сжатие, кручение, изгиб). Для деталей стационарного теплоэнергетического оборудования расчетные условия выбирают на основании длительной их работы в области повышенных температур при ползучести, обусловленной статическими напряжениями от внутреннего давления. Эксплуатация стационарных теплосиловых установок характеризуется относительно невысокими абсолютными рабочими температурами (Тр < 650° С) с небольшим располагаемым градиентом АТ и высокими статическими напряжениями растяжения от внутреннего давления, особенно в зонах концентрации напряжений. Следовательно, термическая усталость металла вместе с ползучестью при-  [c.19]

Общие замечания. Применение простейших моделей формы деталей (стержней, оболочек и др.) позволяет получать замкнутые решения, облегчающие общий анализ работы соединений. Однако при этом не удается полностью учесть реальной формы и условий нагружения деталей, сложного напряженного состояния и характера сопряжения частей деталей (например, резьбы и тела болта и т. п.).  [c.83]

В охлаждаемых сплавах и рабочих лопатках напряженное состояние в критических участках гораздо сложнее, чем в образцах, используемых для испытаний на ползучесть и усталость. Вообще говоря, общедоступны только данные по одноосному нагружению, так что при конструировании деталей приходится прогнозировать служебную долговечность в условиях двух- или трехосного нагружения, пользуясь данными для одноосного напряженного состояния. Методы анализа напряжений в деталях сложной конфигурации становятся все более тривиальными, поэтому определить характер напряженного состояния и уровень напряжений проще, чем установить точную модель поведения материла.  [c.78]

До сих пор в гл. 7 речь шла об одноосном циклическом нагружении. В большинстве же практических ситуаций при расчете вращающихся валов, соединительных элементов конструкций, лопаток турбин, авиационных конструкций, деталей автомобилей и многих других элементов конструкций приходится иметь дело с многоосными циклическими напряженными состояниями. При расчете элементов машин, находящихся в условиях действия многоосного циклического напряженного состояния, допустимо использовать следующее фундаментальное предположение  [c.227]

Объемные модели для исследования напряженного состояния узлов и деталей сложной формы. Модели объемных деталей элементов машин для исследования трехмерного напряженного состояния при статическом нагружении должны удовлетворять условиям геометрического или аффинного подобия, допускать приложение заданных внешних сил и замеры относительных деформаций одним из известных способов. Исходя из этих требований, должны быть выбраны геометрический масштаб и материал модели.  [c.256]

Основное условие нормальной работы резьбовых деталей состоит в том, что резьбовое сечение болтов должно быть изолирована от нагружения изгибом и срезом. Болт, установленный с зазором в отверстие детали (рис. 103), при действии поперечной силы подвергается изгибу и срезу, а также растяжению вследствие удлинения при смещении стягиваемых деталей. Все эти напряжения складываются с напряжениями растяжения от момента, действующего на кронштейн. Поперечные силы создают местные напряжения смятия в отверстиях деталей (зоны А и Б), расклинивая витки резьбового отверстия. При малой глубине завинчивания болта витки резьбы будут работать еще и на срез. В результате возникает сложное напряженное состояние, усугубляющееся тем, что резьбовые витки являются концентраторами напряжений. Последнее особенно опасно для болтов, изготовленных из высокопрочных материалов. В результате создаются ненадежные условия для работы стыка.  [c.351]


Если конструкции работают в условиях повышенных температур, то время становится одним из факторов, обусловливающих образование предельных состояний. Это является следствием постепенного изменения механических свойств материала и перераспределения деформаций и напряжений в детали в результате ползучести, В деталях, находящихся под длительным статическим нагружением, предельное состояние определяется той стадией пребывания под нагрузкой, когда в результате перераспределения и накопления деформаций в зонах наибольшей  [c.6]

Разрушение является процессом, развивающимся во времени в локальных объемах металла, приводящим к глобальному нестабильному разрушению при достижении предельного состояния. Основной задачей механики разрушения является разработка метода расчета деталей на прочность при наличии развивающейся трещины. Кроме того, необходимо уметь определять 1) какой материал и в каком структурном состоянии является оптимальным для заданных условий нагружения 2) какие наиболее информативные методы и критерии следует выбрать для выявления сопротивления материала зарождению и распространению трещины 3) требования к технологии изготовления изделия, при которой повреждаемость материала минимальная 4) как проектировать изделие с точки зрения наиболее благоприятного распределения напряжений у предполагаемых дефектов и концентратов напряжений 5) историю разрушения по фрактографическим параметрам. Таким образом, механика разрушения занимает основные позиции не только в материаловедении, технологии и конструировании деталей машин и агрегатов, но и в диагностике и инспекции разрушения. Знание основных закономерностей разрушения материала необходимо и достаточно для решения перечисленных выше задач механики трещин.  [c.15]

Возможность перехода от одного типа разрушения к другому при изменениях напряженного состояния или свойств материала, которая может быть оценена, например, углом поворота луча напряженного состояния, необходимым для перехода от среза к отрыву. Во многих случаях знание этого чрезвычайно важно например, при выборе материала болтов и других деталей, работающих в сложных условиях нагружения.  [c.264]

Следует особо отметить, что при работе деталей в условиях пластичности и ползучести значительное влияние на напряженное состояние, концентрацию напряжений и деформаций оказывают условия нагружения (последовательность нагружения в т, п.).  [c.558]

Полностью воссоздать при лабораторных механических испытаниях образцов сложное напряженное состояние, возникающее н реальных деталях, как правило, невозможно. Для воспроизведения же этого сложного напряженного состояния и имитации других условий работы материала в эксплуатации разработаны лабораторные методы испытания образцов при разных способах нагружения, с надрезом, трещиной, с различным состоянием поверхности, в различных средах и т. д. [11].  [c.321]

При оценке и использовании материалов, изложенных в справочнике, следует учесть, что разработка инженерных расчетов долговечности и прочности пластмассовых деталей с учетом временных, температурных и других факторов еще далека от завершения. Очень мало исследованы вопросы прочности пластиков в условиях сложного напряженного состояния и сложного нагружения. Проводимые в нашей стране и за рубежом многочисленные исследования деталей из пластмасс часто носят разрозненный характер, методика исследований разнообразна и не всегда обоснована. Поэтому опубликованные результаты работ часто противоречивы. В связи с этим, сложность заключалась также в изложении иногда трудно сопоставимых результатов и рекомендаций.  [c.5]

Создание конструкций высоких параметров, больших мощностей и размеров потребовало разработки вопросов прочности при циклическом нагружении в упруго-пластической области. В этих условиях в наиболее напряженных зонах узлов и деталей происходит существенное изменение закономерностей деформирования и условий образования и распространения трещин циклического нагружения. Это связано с тем, что при указанных уровнях нагрузок, соответствующих сравнительно "малому (до 10 —10 ) числу циклов до разрушения, наблюдается перераспределение по числу циклов упруго-пластических деформаций, зависящее от условий нагружения (неоднородность напряженного состояния, температура, скорость деформирования и др.) и от циклических свойств материалов. Процессы образования и развития трещин малоциклового нагружения в общем случае протекают на фоне накопления однонаправленных и циклических пластических деформаций, причем описание ведется на основе соответствующих критериев малоциклового разрушения. Нестационарность  [c.410]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

Рассматривая результаты экапериментального исследования процессов неизотермическо го нагружения, можно заключить, что в областях упругого деформирования и малых упругопластических деформаций влияние процесса неиаотермического нагружения несущественно в этих условиях даже при достаточно высоких температурах (700—900° С) для расчетов деформированного и напряженного состояний можно использовать представление о единой поверхности деформирования. В то же время в области пластического деформирования продесс неизотермического нагружения может существенно изменить характер развития деформаций и предельные значения прочности и пластичности. Анализ возможного влияния изменения свойств на напряженное состояние деталей на примере расчета дисков турбин дан в работе [41].  [c.49]

При исследовании усталости металлов трещинам всегда уделялось Гюльшое внимание 244, 505, 775, 1075]. В последнее время интерес к этой проблеме особенно возрос в связи с успехами в разработке методов оценки напряженно-деформированного состояния в вершине трещины и появившейся возможностью перехода от качественной оценки роли трещин в процессе усталости металлов к количественному описанию условий страгивания трещин, закономерностей их развития и окончательнм о разрушения с учетом геометрии деталей и трещин в них, условий нагружения и свойств материала. Такой подход дает возможность рассматривать предел выносли-игюти как максимальные напряжения, при которых технологические и эксплуатационные трещины или трещины, возникшие в процессе циклического нагружения, не могут развиваться. Окончательное разрушение детали определяется условиями перехода от стабильного развития усталостной трещины при циклическом нагружении к нестабильному, которое в некоторых случаях может быть хрупким. Особенно большие возможности дает такой подход для описания кинетики развития усталостных трещин и совершенствования методов оценки долговечности деталей при наличии трещин.  [c.297]

Все сказанное свидетельствует о том, что решение вопросов надежности требует знаний в самых различных областях материаловедения, прочности, конструирования, технологии изготовления и сборки, расчетов тепловых полей. Автор поставил перед со й задачу рассмотреть на базе имеющихся в технической литературе сведений и результатов собственных исследований основные аспекты проблемы выбора материалов и прочности деталей ГТУ. Идея книги заключается не в освещении двух тем материалы и прочность деталей , а в рассмотрении вопросов, находящихся на стыке этих тем. Книга не предполагает конкурировать ни с руководствами для конструкторов, в которых подробно излагаются различные методы расчета напряженного состояния, ни с книгами по теориям жаропрочности и легирования жаропрочных сплавов, а также со справочниками по свойствам жаропрочных материалов. Тем не менее в ней делается попытка показать, что традиционный метод выбора материалов деталей по характеристикам длительной прочности, приводимых в справочниках, не позволяет адекватно оценивать их ресурс как по причине отличий реального напряженно-деформированного состояния деталей от истинного, так и по причине зависимости характеристик материала от режима термической обработки (поэтому индивидуальные характеристики заготовки могут отличаться от спршочных), от использованного метода статистической обработки и экстраполяции результатов испытаний, от методики оценки влияния программы нагружения, вида напряженного состояния, от температурных условий эксплуатации и наконец, что весьма существенно, от коррозионной среды.  [c.6]


Для упрочнения стяжных соединений необходи.мо устранить сложное напряженное состояние в крепежных деталях и создать условия, при которых они работали бы только на растяжение. Поперечные силы следует воспринимать дополнительными силовыми элементами, нагруженными на срез.  [c.500]

Схему нагружения выбирают для тогЧ). что(1ы воопроизвести в образцах напряженное состояние, xapaxfepHoe для эксплуатационных условий работы детали, и воспроизвести" в obt)a tne или детали излом. схожий по виду с изломом деталей в условиях эксплуатации.  [c.56]

Наиболее интересными с практической точки зрения являются исследования, в которых определяются условия увеличения долговечности деталей в результате уменьшения скорости роста усталостных трещин. Увеличение прочностных и пластических характеристик материала (ств, стт, i ), уменьшение размера структурных составляющих, увеличение коэффициента асимметрии цикла нагружения, уменьшение жесткости двухосного напряженного состояния, понижение температуры испытания и наличие вакуума — вот далеко не полный перечень факторов, приводящих к уменьшению скорости роста трещины. Увеличение сопротивления усталости, связанное с затруднением роста трещины, происходит и при упрочнении границ зерен дробной механотермической обработкой, и при взрывном упрочнении, приводящем к замораживанию дислокаций [8]. Торможения развития трещин добиваются также применением композиционных материалов, в которых трещина либо вязнет в мягких слоях, либо не может разрушить более прочные армирующие волокна.  [c.7]

Разрушение деталей при эксплуатации, как правило, начинается с поверхности вследствие того, что поверхностные слои оказываются наиболее нагруженными при всех видах напряженного состояния и подвергаются активному воздействию внешней среды. Этому способствуют также облегченные условия пластического течения металла в поверхностном слое по сравнению с сердцевиной детали (облегченный выход дислокаций и вакансий на поверхность, меньше требуется энергии для генерирования дислокаций источниками Франка—Рида) и разупрочняющее действие на металл поверхностного слоя экструзии и энтрузии.  [c.4]

При анализе условий нагружения следует подвергать тщательной оценке термические условия работы оборудования характер температурного градиента в сечении, теплопередачу, термическое расширение. а также длительность термических нагрузок и их повторяемость. Может оказаться, что локальная концентрация температуры в поверхностном слое настолько высока, что уже в тонком слое она приводит к росту зерна или даже расплавлению материала. В случае деталей больших сечений, нельзя забывать о внутренних напряжениях. Подробного анализа требует геометрическая ( рма работающей детали, состояние рабочих поверхностей, а также наличие геометрических и структурных микронадрезов в приповерхностной области.  [c.68]

При оценке прочности и ресурса элементов конструкций, работающих в условиях малоциклового нагружения при переменных температурах и сложнонапряженном состоянии, возникают две связанные задачи определение напряженно-деформированного состояния элементов конструкций при работе материала максимально нагруженных зон за пределами упругости, когда развиты упру-гонластические деформации и деформации ползучести, и на базе полученной информации оценка запасов прочности и долговечности при малоцикловом неизотермическом нагружении. Характер протекания процесса деформирования за пределами упругости и циклические деформации, определяющие формирование предельного состояния материала, зависят от режима термосилового воздействия на деталь и параметров термомеханической нагруженности максимальная температура, градиент температур, длительность и форма термического и силового циклов нагружения и др.), а также сочетания нестационарных режимов нагружения в период эксплуатации изделия.  [c.11]

Вместе с тем обоснование прочности и надежности деталей машин и элементов конструкций при кратковременном, длительном и циклическом эксплуатационном нагружении остается трудно решаемой в теоретическом и экспериментальном плане задачей. Это в значительной степени связано со сложностью детерминированного и стохастического анализа напряженного состояния в элементах конструкций при возникновении упругих и упругопластических деформаций и ограниченностью критериев разрушения в указанных условиях при использовании конструкционных материалов с различными механическими свойствами. Трудности, возникающие при исследовании напряжений и деформаций в наиболее нагруженных зонах в упругой и неупругой области объясняются отсутствием аналитического решения соответствующих задач в теориях упругости, пластичности, ползучести и, тем более, в теории длительной циютической пластичности. К числу решенных таким способо.м задач мог т бьггь отнесены те, в которых определяются номинальные напряжения и деформации при растяжении-сжатии, изгибе и кручении стержней симметричного профиля, нагружении осевыми уси-  [c.68]

Описание сопротивления разрушению деталей с трещинами основано на установлении условий их распространения в связи с номинальной нагруженностью, температурой испытания, геометрией детали (обра.зца), среды и исходного структурного состояния материала. При этом условия распространения трещины при заданных условиях нагружения определяются кинетикой напряженного и деформированного состояния в вершине трещин. Напряженное и деформированное состояние в вершине трещины может быть охарактеризовано коэффициентом интенсивности напряжений Kj, определяемым при растяжении в условиях плоского напряженного состояния в упругой области соответственно в виде (1.70), где а — номинальное напряжение в брутто-сечении I — длина трещины / ИЬ) — поправочная функция, учитывающая геометрические размеры образцов (деталей) и для пластины бесконечных размеров равная единице. При начале спонтанного развития трещины в указанных условиях а = Окр ш Kj = Кю.  [c.22]

Результаты исследований условий возникновения и развития пластических деформаций, которые обычно предапествуют разрушению многих современных конструкционных материалов, являются основой прогрессивного метода расчета деталей машив и элементов сооружений но их предельной несущей способности, обеспечивающего более полное использование ресурсов прочности. При этом весьма важно знать распределение напряжений в зонах ко1щентрацин, где пластическое состояние наступает раньше и дальнейшее развитие пластических деформаций оказывается определяющим для прочности, особенно в условиях цихшического нагружения  [c.6]

Рассмотрим сначала особенности напряженного состояния и концентрации напряжений около отверстий. Такой концентратор, имеюпщй конструктикное или технологическое назначение, встречается во многих деталях машин (пластинах, стержнях, оболочках, дисках и т. п.). Вопросам расчета концентрации напряжений около отверстий посвящено большое число работ. Однако наиболее полно эта задача решена в упругой постановке, менее детально — в упруго-пластической области и к условиях ползучести. Поэтому основное внимание уделим концентрации напряжений в пластинах с отверстиями при упруго-пластических деформациях и деформациях ползучести при простом и сло кном нагружениях. Упругие решения приведем лишь для сравнения.  [c.85]

Асимметричный цикл нагружения. Расчет на прочность таких деталей, как диски и валы, которые работают при действии переменных напряжений на фоне статических напряжений от центробежных сил и термических нагрузок, выполняют на основе гипотеа усталостной прочности для сложного напряженного состояния асимметричного цикла. Для диска характерным является сочетание переменного изгиба с расположением узловых линий по, диаметру или по окружности с двухосным статическим растяжением. Для вала характерным является сочетание переменных напряжений круче-, ния, растяжения и изгиба со статическим крутящим и изгибающим напряжением. Запас усталостной прочности в условиях сложного напряженного состояния можно определить, приведя асимметричный цикл переменных напряжений к симметричному через известные зависимости (Диаграммы предельных амплитуд)  [c.85]


Смотреть страницы где упоминается термин Условия нагружения и напряженное Состояние деталей : [c.595]    [c.155]   
Смотреть главы в:

Проектирование с учетом усталости  -> Условия нагружения и напряженное Состояние деталей



ПОИСК



Деталь состояния

Нагружение Условия

Напряжённое детали



© 2025 Mash-xxl.info Реклама на сайте