Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика развития усталостных трещин

Вопросы усталости, и в первую очередь малоцикловой усталости, совершенствование методов испытания на усталость, обоснование деформационных критериев малоцикловой усталости, установление физической модели накопления повреждений при повторно-переменных нагрузках, кинетики развития усталостных трещин в тех или иных условиях нагружения, статистический аспект усталости, а также разработка инженерных методов расчета элементов конструкций на прочность при повторно-переменных напряжениях с учетом различных факторов (вида напряженного состояния, конструктивно-технологических особенностей, температуры, начальной напряженности и т. п.).  [c.664]


Имеется много работ, в которых применение растрового микроскопа позволило получить ценную информацию о структуре покрытий. Изучались шлифы и изломы детонационных покрытий. Показано, в частности, исключительно плотное прилегание первого слоя покрытия (толщиной меньше 15 мкм) к поверхности основного металла [15]. В результате параллельных исследований на сканирующем микроскопе и микрозонде образцов с детонационными слоями и целыми покрытиями из твердых сплавов было отмечено, что в приграничных участках со стороны покрытий образуются зоны тонкодисперсной смеси размером 15 мкм, при напылении формируется поверхностная граница распада со своеобразным анкерным зацеплением [258]. В Институте машиноведения АН СССР проводился фрактографический диализ структуры детонационного покрытия из окиси алюминия на поверхностях косого шлифа и излома [259]. Кинетику развития усталостной трещины в образцах с плазменными покрытиями изучали по снимкам поверхности излома [61].  [c.180]

По имевшим место к моменту исследования случаям обнаружения трещин на верхних поясах шпангоута № 18 хвостовых балок вертолетов Ми-6 была выполнена вероятностная оценка величины наработки, до которой появление подобных трещин на других вертолетах маловероятно [17]. Начиная с этой наработки, необходимо было вводить контроль стыка по шпангоуту № 18 в процессе ремонта для выявления в нем трещин. Оценка нижней границы разброса наработок при достижении предельного состояния стыка по шпангоуту № 18 проведена по методике, в которой использованы представления о линейном накоплении усталостных повреждений, логарифмически нормальном законе распределения усталостной долговечности [18], а кинетика развития усталостных трещин рассмотрена как линейная зависимость прироста усталостных трещин за полет по ее длине [19]. В результате было получено, что до наработки 10000 ч вероятность появления указанных трещин не превышает 5 %.  [c.729]

Разработана методика исследования закономерностей кинетики развития усталостных трещин и условий перехода к хрупкому разрушению при комбинированном воздействии гармонического и ударно- -го нагружений при низких температурах 143].  [c.263]

Пункт 1 рассмотрен в данной главе. Обсуждение пунктов 2 и 3 выходит за пределы ее содержания, но в следующем разделе главы даны некоторые указания по кинетике развития усталостных трещин.  [c.426]

Кинетика развития усталостных трещин и предельное состояние тел с трещинами  [c.62]

Существенное влияние на кинетику развития усталостных трещин в металлах, помимо таких величин, как К кс и г, оказывают форма и частота циклов нагружения, среда, температура, история нагружения и т. д.  [c.72]


В настоящее время для описания кинетики развития усталостных трещин и предельного состояния тел с такими трещинами широко используются критерии механики разрушения которые кратко были рассмотрены в параграфе 5 гл. I.  [c.303]

Кинетика развития усталостных трещин Механизм развития трещин  [c.14]

В настоящее время используют два основных метода расчета остаточного ресурса при малоцикловых нагрузках по ГОСТ 25859-83 Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках по известным закономерностям кинетики развития усталостных трещин в соответствии с канонами механики разрушения.  [c.212]

Кинетика развития усталостной трещины в общем случае имеет те же четыре периода, что и разрушение при однократном нагружении .  [c.196]

Наиболее эффективно применение приборов для изучения кинетики развития усталостных трещин, когда важное значение приобретает не только фиксирование момента их зарождения и регистрация их протяженности, но и фронт развития внутрь испытуемого изделия.  [c.467]

Влияние температуры на кинетику развития усталостных трещин в основном металле и сварном соединении оценивали при испытании образцов типа СТ-1 толщиной 25 мм. Ориентация трещины в основном металле — осевая и тангенциальная, в различных зонах соединения — тангенциальная, см. рис. 62.  [c.135]

Оценка долговечности элементов конструкций на стадии кинетики усталостных трещин в ряде случаев является актуальной инженерной задачей. Это в первую очередь относится к сварным узлам, так как при высокой концентрации напряжений, обусловленной несовершенством формы сварных соединений, долговечность на стадии зарождения трещины может быть незначительной и циклический ресурс конструкции в большей степени будет определяться стадией развития усталостной трещины. Более того, в случае технологических трещиноподобных дефектов типа подреза, несплавления и т. п. в сварных швах стадия зарождения трещины отсутствует и ресурс конструкции определяется только ее развитием.  [c.268]

Процесс разрушения элемента конструкции в эксплуатации отражен в реакции материала на все многообразие условий его нагружения, выраженное в формировании определенной морфологии рельефа излома в направлении развития усталостной трещины. По параметрам рельефа излома, таким, например, как усталостные бороздки, может быть восстановлена кинетика распространения усталостной трещины в терминах — скорость процесса разрушения по длине трещины. Если исходить из того, что каждому диапазону воздействия или условиям нагружения, или их сочетанию соответствует своя реакция материала, приводящая к реализации определенного механизма разрушения, то тогда по параметрам рельефа излома легко определить, в каком диапазоне воздействия работал материал. Но в таком случае для каждого диапазона или условий нагружения должна быть построена своя базовая или тестовая кинетическая кривая, и уже она может быть использована для описания процесса роста усталостных трещин в строго установленных границах ее использования. При рассмотрении реализованного процесса роста трещины на основе изучения, например, параметров рельефа излома или слежения за ростом трещины в ходе периодического эксплуатационного контроля получаемой информации достаточно, чтобы по данным эксплуатационного контроля решать вопросы об обеспечении  [c.187]

У поверхности сдвиговый процесс формирования скосов от пластической деформации под дет -ствием мод III+I раскрытия берегов трещины остается неизменным как на стадии стабильного роста трещины, так и на этапе ее быстрого роста в образце или элементе конструкции. Смена механизма разрушения у поверхности не происходит, а наблюдаемые изменения в кинетике усталостной трещины по поверхности образца или детали отражают смену механизмов разрушения в срединной части фронта трещины. Поэтому изучение эффектов влияния параметров цикла нафужения на развитие усталостных трещин связано с сопоставлением наблюдаемой реакции материала на внешнее воздействие на поверхности образца и сопоставлением этой реакции с процессами в срединной части материала, где по изменениям величин параметров рельефа излома можно следить за кинетикой усталостного процесса.  [c.285]


Таким образом, из представленных данных по кинетике развития усталостного разрушения вала винта следует, что начало развития событий связано с появлением неплотности стыка по шлицевому фланцу. Результатом этого может быть не только разрушение шпилек, но и разрушение вала с отделением винта в полете ВС. Очевидно, что основная длительность процесса роста трещины связана с начальным этапом движения трещин от шлицевого фланца.  [c.711]

Преимущественное развитие усталостных трещин происходит в поверхностных слоях, что обусловлено более ранним по сравнению с остальным объемом металла повреждением поверхностных слоев из-за более раннего накопления в этих слоях критической плотности дислокаций [83]. Поскольку процесс усталости во всей массе протекает неоднородно, то для изучения изменения свойств в процессе циклического нагружения необходимы характеристики, которые позволяли бы судить о процессах, происходящих в локальных объемах металла. В связи с этим при изучении усталостного разрушения широкое применение нашли методы измерения твердости и микротвердости, рентгеновского анализа, оптической и электронной микроскопии. Результаты этих исследований представляют большой интерес для выявления сходства и различия кинетики накопления структурных повреждений и разрушения в условиях объемного циклического нагружения и при фрик-ционно-контактной усталости, поскольку аналогичные методы исследования широко применяются при трении. Методы интегральной оценки структурных изменений, такие, как измерение электросопротивления (проводимости), внутреннего трения, магнитных свойств, несмотря на то что требуют специальной подготовки образцов и соответственно испытательного оборудования, также могут быть полезны для исследования процессов трения.  [c.33]

В сборнике представлены доклады VI Международного коллоквиума Механическая усталость металлов (Киев, июнь 1981 г.). Рассмотрены вопросы циклической прочности конструкционных материалов и конструкций, кинетики развития трещин усталости и микромеханизмов разрушения, разработки общих подходов к проблеме усталостного разрушения, зарождения и развития усталостных трещин.  [c.2]

Основными недостатками полученных результатов являются, во-первых, отсутствие информации о кинетике накопления усталостного повреждения в металлах на стадии зарождения усталостной трещины, что исключает возможность прогнозировать момент возникновения макроскопической усталостной трещины с учетом структурных особенностей сплавов и влияния на процесс накопления повреждения эксплуатационных и других факторов во-вторых, отсутствие четкого разграничения стадий возникновения и развития усталостных трещин, особенно в тех случаях, когда стадия развития усталостных трещин составляет значительную часть общей долговечности в-третьих, недостаточное внимание к исследованию критериев окончательного разрушения образцов и конструктивных элементов с усталостной трещиной при циклическом нагружении.  [c.3]

Таким образом, стадийность процесса развития усталостной трещины требует более тщательного изучения природы разрушения с учетом особенностей дискретного характера усталостного разрушения и с использованием подходов линейной механики разрушения. Полученные результаты позволили детализировать стадии развития усталостной трещины, ввести новые пороговые значения амплитуды коэффициента интенсивности напряжений AKf и АК , характеризующие циклическую трещиностойкость, и дать им физическую интерпретацию, а также установить соответствующие им пороговые скорости роста трещины (vlh = а, за цикл и щ), характеризующие изменения кинетики и особенностей механизма разрушения. Процесс роста усталостной трещины следует рассматривать с позиции дискретного разрушения с учетом существования кванта разрушения, а также предельной запасенной энергии, накапливаемой при циклировании и контролирующей кинетику роста трещины (движение дислокаций и процесс повреждений в результате пластической деформации в локальном объеме).  [c.257]

Описанная модель разрушения конструкционных сплавов с тре-Ш.ИНОЙ при циклическом нагружении позволяет предложить схемы нестабильного развития усталостных трещин при переходе от усталостного к хрупкому разрушению конструкционных сплавов с трещинами в зависимости от соотношения величин К /с, Кю или К с и вида зависимости текущего коэффициента интенсивности напряжений от схемы нагружения и от размера развивающейся трещины. Эти схемы позволяют прогнозировать кинетику нестабильного развития усталостных трещин и определять характеристики вязкости разрушения, которые контролируют предельную несущую способность конструкционных сплавов с трещинами и конструкционных элементов из них, в зависимости от класса этого сплава и режимов циклического нагружения.  [c.213]

Kd ) и на рис. 130, е (Kf Ki = Кос), кинетика нестабильного развития усталостных трещин определяется аналогично схеме, приведенной на рис. 130, г (кривая 2), но предельная несущая способность материала или конструктивного элемента определяется характеристикой Кос-  [c.216]

Пульсирующий цикл стационарного режима нагружения часто используется при исследовании кинетики усталостного разрушения. Однако в условиях эксплуатации рост усталостных трещин происходит при различных комбинациях асимметрии цикла, количества и направления действия сил и пр. Поэтому необходимо выяснить роль основных параметров цикла нагружения в развитии усталостных трещин. Наиболее изученной является асимметрия цикла нагружения, с которой целесообразнее всего начать рассмотрение влияния различных параметров цикла нагружения на процесс роста усталостных трещин.  [c.158]


Наиболее полно эффект влияния переходных режимов на кинетику усталостных трещин были изучены Дж. Чангом и др. [173] на алюминиевом сплаве. Кроме описанных ситуаций, они рассмотрели случай влияния сжимающей нагрузки перед и после импульса перегрузки. Оказалось, что сжимающий цикл нагрузки после перегрузки практически снижает эффект замедления развития усталостной трещины.  [c.273]

Влияние коэффициента асимметрии цикла на кинетику развития трещин в большей степени проявляется при относительно низких уровнях ДА". Эти данные хорошо согласуются с результатами исследований, выполненных на плоских образцах (см. рис. 74). Совместное рассмотрение кинетических диаграмм для плоских образцов толщиной 10 мм и образцов СТ-1 толщиной 25 мм показывает, что форма и толщина испытываемых образцов практически не влияют на скорость развития усталостных трещин.  [c.139]

С целью проведения анализа кинетики развития усталостных трещин в испытанных образцах с разными значениями КСТ были рассчитаны кинетические кривые их разрушения. Расчет кинетических кривых вели с использованием полученных зависимостей отношения полуосей полуэллипти-ческих трещин от длины трещины и поправочных функций на угловое положение точек фронта трещины, в направлении которых проводили расчет.  [c.382]

Газовая плотность. Кинетику развития усталостных трещин на ранних стадиях разрушения и их влияние на газовую плотность металла тонкостенных трубчатых образцов исследуют на установке, имеющей герметическую камеру с помещенной в ней электрорезонансной машиной ЭВМ-1, течеискатель ПТИ-6 и ультразвуковой дефектоскоп ДУК-6В.  [c.41]

О кинетике развития усталостных трещин в плакированной стали можно-судить по рис. 136. Здесь приведена серия микрофотографий, снятых при 200° С с поверхности нагружаемого образца двухслойной стали СтЗ -f + Х18Н10Т непосредственно в процессе испытания на установке ИМАШ-10-68. При приближении усталостной трещины к межслойной поверхности раздела в вершине трещины образуется зона с повышенной плотностью полос скольжения (рис. 136, а—д).  [c.225]

Появление усталостных трещин в силовых элементах при длительной эксплуатации самолетов из-за усталостных, коррозионных и случайных повреждений, а также возможность существования начальных дефектов потребовали дополнения задач проектирования требованием создания конструкций, обладающих свойствами живучести. Для решения этих задач потребовалось изучение новых характеристик материалов, позволяющих на основе подходов линейной механики разрушения определять кинетику развития усталостных трещин и сопротивление материала с трещиной статическому разрушению. Эти характеристики в ряде случаев вступают в противоречие с традиционными механическими характеристиками. Так, например, высокопрочные материалы, которые вьпадны по условиям статической прочности и минимума веса, как правило, оказывались более чувствительности к образованию и развитию трещин, чем материалы средней и малой прочности.  [c.408]

Ниже рассмотрены методики и результаты исследования кинетики развития усталостных трещин и критических значений коэффициентов интенсивности напряжений для ряда металлов в связи с влиянием температуры, скорости деформирования и цикличности нагружения и рассмотрена модель перехода от стабильного к нестабильному развитию трещины, учитывающая неупругий характер деформирования металла в вершине трещины и дающая возможность объяснить различие критических значений коэффициентов интенсивности напряжений при статическом динамическом KiD и циклическом Kj/ нагружениях.  [c.304]

Кинетика развития усталостных трещин. Результаты исследования кинетики развития усталостных трещин в цилиндрических образцах при круговом изгибе из сталей 10ГН2МФА, 45 и армко-железа, свойства которых приведены в табл. 38, проанализированы в работе [91]. Исследования проводились в области прямолинейного участка зависимости daldN — й макс соответствующей уравнению (1.88). Трещины инициировались путем нанесения концентратора в виде сверления диаметром 0,4 мм и глубиной 0,3 мм. Размеры трещины измерялись с помощью микроскопа со стробоскопическим освещением по методике, рассмотренной выше. Связь между глубиной трещины а и ее длиной на поверхности I устанавливали на основе специально поставленных экспериментов [132].  [c.316]

Программное нагружение, заключающееся в циклическом воздействии на образец напряжений ai =220 и (72 =160 МПа (см. рис. 72) использовали, для получения на поверхности разрушения образца колец (см. рис. 69) с целью исследования кинетики развития усталостной трещины при различнь1Х напряжениях. При этом напряжения  [c.347]

Современные достижения в области физики и механики разрушения позволяют, в рамках фрактографической экспертизы, перейти от качественных к количественным оценкам кинетики развития усталостных трещин. Основная задача, которая решается в настоящее время,— это определение длительности роста усталостных трещин в деталях и элементах конструкций. Кроме того, при проведении исследований причин разрушений деталей и конструкций возникает необходимость решать и другую важную задачу, связанную с оценкой уровня номинальных разрушающих напряжений. В настоящее время имеются лишь отдельные публикации в отечественной и зарубежной литературе, свидетельствующие о недостаточной методиче-  [c.299]

Некоторые исследователи разделяют цикл развития усталостного излома на три стадии, различающиеся по скорости развития усталостной трещины. См., например, Р. Е. Глинина, И. А. Разов. Исследование кинетики развития усталостной трещины в судокорпусных сталях.— В кн. Металловедение. Л., Судостроение , 1967, с. 153—162.  [c.196]

При исследовании усталости металлов трещинам всегда уделялось Гюльшое внимание 244, 505, 775, 1075]. В последнее время интерес к этой проблеме особенно возрос в связи с успехами в разработке методов оценки напряженно-деформированного состояния в вершине трещины и появившейся возможностью перехода от качественной оценки роли трещин в процессе усталости металлов к количественному описанию условий страгивания трещин, закономерностей их развития и окончательнм о разрушения с учетом геометрии деталей и трещин в них, условий нагружения и свойств материала. Такой подход дает возможность рассматривать предел выносли-игюти как максимальные напряжения, при которых технологические и эксплуатационные трещины или трещины, возникшие в процессе циклического нагружения, не могут развиваться. Окончательное разрушение детали определяется условиями перехода от стабильного развития усталостной трещины при циклическом нагружении к нестабильному, которое в некоторых случаях может быть хрупким. Особенно большие возможности дает такой подход для описания кинетики развития усталостных трещин и совершенствования методов оценки долговечности деталей при наличии трещин.  [c.297]

В настоящем разделе кратко рассмотрено современное состояние исследований по некоторым основным вопросам, которые необходимо решать при расчете долговечности конструкций на стадии развития усталостной трещины. Отмечены наиболее важные акспекты кинетики усталостных трещин, которые учтены при разработке оригинальных методов расчета, изложенных в последующих разделах.  [c.193]

Тем не менее значение КИН также необходимо знать, поскольку существует другая задача в анализе кинетики роста усталостных трещин в эксплуатации, которая относится к определению уровня напряжения. Именно при решении этой задачи возникает вопрос о том, какой именно уровень и какого напряжения определяется на основе анализа параметров рельефа излома. Реализованный процесс представляет собой реакцию материала на внешнее воздействие и поэтому является некоторой интегральной характеристикой поведения среды — металла — на всю совокупность параметров внешнего воздействия, выразившуюся в продвижении трещины на ту или иную величину на рассматриваемой ее д.иине. В такой постановке задачи изучение процесса развития усталостных трещин в элементах авиационных конструкций осуществляют рассматривая металл как некоторую открытую систему, которая в процессе распространения в ней усталостной трещины производит непрерывный обмен энергией с окружающей  [c.187]


Возникающая ситуация перед вершиной распространяющейся трещины и за ней оказывает различное влияние на развитие усталостной трещины при двухосном нагружении при различной ориентировке фронта трещины по отношению ко второй компоненте нагрузки. Это типично синергетическая ситуация в реакции материала на внешнее воздействие. В зависимости от того, какую роль играют внешние условия нагружения в кинетике усталостных трещин, материал имеет возможность задействовать различные механизмы разрушения, оказывающие влияние на скорость протекания процесса эволюции его состояния с распространяющейся усталостной трещиной. Добавление второй компоненты к нагружению по одной оси при благоприятной ориентировке трещины вызывает доминирование либо процесса пластической деформации в вершине трещины (перед ее вершиной), либо стимулирует эффекты контактного взаимодействия в перемычках между мезотуннелями за вершиной трещины. Выбор того или иного процесса происходит самоорганизован-но и зависит от того, какой из задействованных механизмов деформации и разрушения наиболее эффективно приводит к снижению темпа подрастания трещины, а следовательно, позволяет наиболее эффективно поддерживать устойчивость открытой системы — сохранять целостность элемента конструкции с развивающейся в нем усталостной трещиной.  [c.324]

В ходе изучения кинетики зарождения и развития усталостной трещины было показано, что к моменту последнего полета вертолета в лонжероне лопасти усталостная трещина протяженностью около 80 мм уже имела место при окончательной длине трещины около 110 мм и ее площади около 60 % по отнопгенню ко всему сечению лонжерона. Последний полет происходил при нестабильном развитии усталостной трещины, когда ее скорость существенно превышает указанную выше величину максимальной скорости стабильного роста трещины. Поэтому продвижение трещины было осуществлено на значительную длину, составившую около 20 мм (рис. 12.11). Причем характерно, что на относительном радиусе лопасти 0,5 процесс роста трещины шел менее интенсивно, чем на относительном радиусе лопасти 0,7. Из изменения параметров рельефа излома видно насколько близким к драматическому исходу было развитие усталостной трещины в лонжероне в последнем, коротком полете вертолета. Только в отдельных локальных зонах по сечению еще происходило устойчивое подрастание трещины. При частоте вращения лопасти 120 об/мин средняя скорость распространения усталостной трещины составила около 20/(10 X 120) = 1,6 10 м/цикл. Это на порядок больше, чем для максимальной скорости стабильного роста трещины в алюминиевых сплавах, что еще раз подтверждает драматический характер развивавшихся событий в последнем полете вертолета.  [c.649]

В результате интенсивного развития исследований кинетики усталостной трещины в конструкционных материалах на протяжении последних двадцати лет было предложено много различных методик испытания ЦТКМ. Этому в значительной мере способствовало применение линейно-упругой механики разрушения для описания развития усталостной трещины и установление Пэрисом и др. [6] зависимости скорости роста усталостной трещины v от коэффициента интенсивности напряжений в вершине усталостной трещины К в виде  [c.285]

На основании анализа и обобщения многочисленных собственных и описанных в литературе результатов исследований развития усталостных трещин в сталях, алюминиевых, титановых и магниевых сплавах, представленных в виде диаграмм усталостного разрушения (зависимостей скорости роста трещины от размаха или наибольшего значения коэффициента интенсивности напряжений), формулируются общие закономерности этого процесса и обсуждаются типичные отклонения от них. Устанавливаются параметры, позволяющие количественно характеризовать циклическую трсщипостопкость материала и воспроизвести диаграмму его усталостного разрушения. В этой связи рассматриваются различные математические модели кинетики роста трещины и оценивается статистическими методами их соответствие эксиерименту.  [c.429]

Обобщение результатов исследований закономерностей стабильного и нестабильного развития усталостных трещин, характеристик вязкости разрушения конструкционных сплавов различных классов при статическом, циклическом и динамическом нагружениях при различных температурах и вариантах термической обработки образцов различных толщин, изложенных выше, позволило предложить и обосновать модель разрушения конструкционных сплавов с трещинами при циклическом нагружении fl65], которая учитывает влияние цикличности нагружения на изменение реологических свойств материала в пластически деформируемой зоне у вершины трещины и динамический характер распространения трещины после ее страгивания. Модель позволяет прогнозировать соотношения значений характеристик вязкости разрушения при различных видах нагружения и кинетику нестабильного развития усталостных трещин для материалов различных классов в зависимости от режимов циклического нагружения.  [c.210]

Развитие трещины скачками перейдет в стабильный ее рост при / l развития усталостных трещин определяется аналогично схеме, приведенной на рис. 130, а (кривая 2), но предельная несущая способность материала или конструктивного элемента определяется и в случае рис. 130, б и в случае рис. 130, в характеристикой Кос (так как трещина после страгивапия распространяется быстро). В случаях, описанных на рис. 30, д Kf Ki <  [c.216]


Смотреть страницы где упоминается термин Кинетика развития усталостных трещин : [c.444]    [c.82]    [c.265]    [c.684]    [c.81]    [c.308]   
Смотреть главы в:

Безопасное развитие трещин в элементах оболочечных конструкций  -> Кинетика развития усталостных трещин



ПОИСК



Кинетика

Развитие усталостных трещин

Трещина развитие

Трещина усталостная

Усталостная



© 2025 Mash-xxl.info Реклама на сайте