Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частные случаи применения основного уравнения

В технической практике получили распространение различные, частично уже упоминавшиеся, приближенные способы решения осесимметричных задач, основанные на различных упрощающих предположениях и форме линий ток 1,— такие, например, как теория цилиндрической и конической ступеней в пределах зазоров между решетками (с учетом и без учета кривизны линий тока). Все эти способы содержатся как частные случаи в основных уравнениях осесимметричной задачи и ценою потери строгости постановки дают возможность получения обозримых решений, не требующих применения ЭЦВМ (Г. Н. Абрамович, 1953 М. Е. Дейч и Г. С. Самойлович, 1959 и др.).  [c.148]


Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]

Рассматривая старение изделий как наиболее общий процесс изменения рабочих свойств материала и паяных швов на стадиях хранения, транспортирования и применения по назначению, включая все виды коррозии, целесообразно считать выражения (ИЗ)—(118) как частные случаи основного уравнения старения, которое обычно пишется в виде [19]  [c.345]

В построении математических моделей функционирования главное внимание обращается не на использование, а на методологию применения методов функционального анализа. Принято считать, что во всех случаях лучше всего применять методы функционального анализа в их наиболее чистом, простом и фундаментальном виде. Уравнения, полученные из исходных формул, а также специальные и сложные уравнения используются в частных случаях, и в соответствующих конкретных условиях они оказываются полезными. Однако в общем случае, и особенно в новых и необычных условиях, желательно применять только основные  [c.227]

Как уже отмечалось при изложении теории пограничного слоя в потоке несжимаемой жидкости, путь непосредственного интегрирования уравнений Навье — Стокса при тех значениях числа Рейнольдса, которые характерны для теории пограничного слоя первого приближения (уравнения Прандтля), в рассматриваемых случаях оказывается недоступным, причем не только для аналитического, но и для численного, машинного решения. На помощь приходят асимптотические методы (методы малых возмущений). Мы уже познакомились с частным случаем применения такого рода методов, когда рассматривали основной для теории пограничного слоя прием сшивания решений уравнений Прандтля с внешним невязким потоком ( 86).  [c.700]


Применение этих основных уравнений к некоторым частным случаям приводит Дюамеля к решениям, представляющим практический интерес. Он начинает с полой сферы, температура которой выражается заданной функцией расстояния от центра. Он показывает, что изменения длин внутреннего и наружного радиусов зависят лишь от среднего значения температуры стенки сферической оболочки. Он распространяет эту закономерность на оболочку, состоящую из двух концентрических слоев различных материалов. В этой статье исследуется также и цилиндрическая труба, температура которой определяется заданной функцией радиального расстояния. В заключение Дюамель исследует перемещения, вызываемые в сферической оболочке изменением температуры. На протяжении всей этой работы Дюамель предполагает, что упругая постоянная не зависит от температуры. Во втором мемуаре ), имеющем первостепенную важность в теории теплоты, он изучает изменения температуры, возникающие в результате деформации, а также различие удельной теплоты при постоянном объеме и при постоянном давлении.  [c.294]

Мы будем называть это уравнение уравнением Даниила Бернулли в дифференциальной ( орме. Частный случай. этого уравнения был выведен Д. Берн лли в 1738 г. применением теоремы живых сил. Уравнение Бернулли является одним из основных уравнений аэродинамики. Ши окая область его применения обусловлена тем, что для весь.ма общего класса случаев, х менно для установившегося движения, оно связывает такие важнейшие величины, как скорость жид) ости, ее плотность, давление в дан-  [c.63]

Когда число степеней свободы конечно, основной определитель может быть разложен по степеням 1, что дает уравнение у( х) = О степени 2т. Условие устойчивости требует, чтобы все действительные корни и действительные части всех комплексных корней были отрицательными. Если, как это делается обычно, представить комплексные числа точками, координаты которых суть X и у, то условие устойчивости требует, чтобы все точки, представляющие корни, лежали влево от оси /-ов. Раус очень подробно рассмотрел применение правила Коши относительно числа корней внутри некоторого контура в качестве контура бралась полуокружность бесконечно большого радиуса на положительной стороне оси у-ов. Раусу 1) удалось придать результатам форму, удобную для практического применения к частным случаям.  [c.165]

Лекции по механике сплошных сред являются частью готовящегося к изданию курса Механика и могут рассматриваться как самостоятельное учебное пособие по данной теме. Лекции написаны на основе курсов, читаемых авторами на физическом факультете МГУ. Поскольку раздел Механика сплошных сред невозможно изложить без применения соответствующего математического аппарата, то он является одним из самых сложных разделов курса общей физики. Изложение материала построено на индуктивном методе, в рамках которого студенты вначале изучают более простые темы Гидростатика и Аэростатика , а затем изучают динамику движущихся жидкостей и газов. В конце студенты знакомятся с основными уравнениями гидродинамики, получающимися как обобщение частных случаев движения сплошных сред. Это, по нашему мнению, позволит им достаточно легко адаптироваться при изучении механики сплошных сред в курсе теоретической физики.  [c.3]

В механике избран традиционный путь, начинающийся с законов Ньютона, динамики материальной точки. Вся электродинамика изложена на основе учения об электромагнитном поле в вакууме, причем общие его уравнения предшествуют частным случаям. В квантовой механике изучению основных вопросов предпослана пропедевтическая тема, содержащая решение простейших одномерных задач еще без применения специального математического аппарата. В статистической физике в основу положен квантовый подход, что позволяет проще и последовательнее дать ее исходные положения и получить основные выводы.  [c.4]

Механические характеристики двигателей и рабочих машин представляют собой большей частью сложные зависимости и изображаются в виде кривых линий. Динамическое исследование механизмов во многих случаях целесообразно производить аналитическими методами с тем, чтобы можно было установить закономерности изменения основных параметров машинного агрегата. Это возможно в тех случаях, когда удается решить дифференциальные уравнения движения механизма и представить их решения в конечном виде. Если механические характеристики двигателя и рабочей машины представляют собой сложные функции кинематических параметров, то сделать это оказывается невозможным, и тогда для решения дифференциальных уравнений приходится применять численные или графические методы. Путем их применения получаются результаты частного характера, по которым нельзя сделать обобщающих выводов.  [c.24]


Для многих задач отсутствуют математически строгие решения. Наши выводы в основном будут основываться на интуиции, на экспериментах в аэродинамических трубах и на численных экспериментах. Большинство численных экспериментов по исследованию граничных условий осуществлялось при помощи простых двухслойных явных схем для уравнений переноса вихря. Заметим, что известно несколько случаев, когда те же граничные условия, взятые в иных схемах, приводят к неустойчивости. (Термин неустойчивость используется здесь в смысле отсутствия сходимости итераций, а не обязательно в смысле экспоненциального роста ошибки.) Эти примеры могут служить предостережением от применения таких существенно частных методов. В данной связи мы предлагаем на начальном этапе построения вычислительного алгоритма для отладки программы и выяснения устойчивости схемы, применяемой во внутренних точках, брать граничные условия, которые имеют наинизший порядок и являются наиболее ограничительными. Затем можно будет попробовать граничные условия, накладывающие меньшие ограничения.  [c.213]

Запись уравнений в формах7(И.1), (11.2) имеет смысл только в тех частных случаях, когда законы изменения жесткости таковы, что решения этих уравнений выражаются через табулированные или элементарные функции. В -прежнее время в основном только такие уравнения и решались. Развитие вычислительной техники полностью изменило положение. С помощью ЭВМ можно получить численное решение любого уравнения. Но для применения ЭВМ форма уравнений типа (ИЛ)—(11.3) не является оптимальной. Все стандартные программы решения уравнений на ЭВМ рассчитаны на интегрирование систем уравнений первого порядка.  [c.447]

Первый коэффициент вязкости х является основным. Для его определения существует множество различных способов, основанных на применении тех конечных формул, которые могут быть получены в результате интегрирования соответственных дифференциальных уравнений с использованием соотношений (11.18) для частных случаев движения жидкости. О некоторых из этих способов мы будем говорить ниже. Что же касается второго коэффициента вязкости, необходимость учёта которого может возникать только при рассмотрении того движения жидкости или газа, в котором явно проявляется свойство их сжимаемости, то до последнего времени его совершенно не учитЬвали. И только в связи с исследованиями Л. И. Мандельштама и М. А. Леонтовича ) влияния внутренних процессов с большим временем релаксации на распространение звука в жидкости было указано на необходимость учёта второго коэффициента вязкости. В отдельных случаях значение второго коэффициента вязкости может намного превышать значение основного коэффициента вязкости. Но приборов по определению второго коэффициента вязкости пока пе предложено.  [c.66]

Отправным пунктом вычислительного эксперимента является физико-математическая модель. Прежде чем переходить к построению численных алгоритмов, ее необходимо исследовать, так как для выбора наиболее эффективных методов численного решения задач большую роль играет знание основных закономерностей изучаемых явлений. При исследовании математической модели используются все традиционные методы и средства, которые включают в себя отыскание аналитических решений в частных случаях, построение асимптотик, применение теории размерностей и подобия [75] и т. д. Значительную помощь в получении информации об изучаемом процессе может оказать анализ инвариантных решений, вид которых определяется из теории групповых свойств дифференциальных уравнений [48, 63]. Наиболее распространенными типами инвариантных решений являются автомодельные решения и решения типа бегущих волн. Автомодельные решения позволяют дать качественную картину отдельных сторон исследуемых процессов. Следует отметить, что при учете большого числа физических эффектов класс автомодельных решений существенным образом ограничен. Однако несмотря на это их свойства зачастую характерны и для более общих случаев. Они могут дать достаточно широкую информацию о сложных нелинейных процессах и позволяют установить зависимости характерных величин от различных параметров задачи. Автомодельные решения представляют собой также хорошие тесты для отработки методов численного интегрирования. Сопоставление результатов расчетов с известными решениями позволяет судить о точности разностных схем, скорости сходимости и т. д. Поэтому построение тестовых решений, в том числе автомодельных, представляет собой необходимый элемент в общей программе конструирования численных методов. Следует подчеркнуть, что при выполнении  [c.5]

Во-первых, ни в коем случае яе надо пугаться большого числа формул. Важно лншь четко понимать смысл входящих в уравнения величин, смысл самих уравнений н основную идею нх вывода. Кстати заметим, что формулами теории оболочек в наиболее общем нх виде при расчете пользоваться почти никогда не приходится. Практически всегда, вследствие тех нли иных условий, этн формулы упрощаются главным образом это определяется очертанием срединной поверхности оболочек. Одиако располагать уравнениями в наиболее общем нх виде очень существенно, ибо это позволяет легко получать нз них частные случаи, число н характер которых заранее предвидеть невозможно. Важно уяснить, в чем состоит сущность применяемых гипотез нли упрощающих тторню предположений, помнить, где н как оин используются, как в снязи с принятием этих, гипотез и допущений ограничивается область применения соответствующего частного аппарата. В конце некоторых глав даются резюме, подводящие соответствующие итоги. В них вновь отмечается та минимальная информация, которая ин в коем случае не должна ускользать из поля зрения читателя за всеми формулами н выкладками. В тех главах, по которым нет резюме, в тексте даны подробные пояснения, ие обремененные формулами, но освещающие сущность вопроса.  [c.4]


Решение задачи об описании всех классов решений данного типа с линейностью по одной или двум пространственным переменным сводится к исследованию систем переопределенных уравнений в частных производных. Полный анализ совместности таких систем, особенно в случае уравнений газовой динамики, представляет весьма значительные трудности, поэтому в данной работе приводятся лишь некоторые доста точные условия для аналитической формы представления термодинамических величин (температуры Т, давления р и скорости звука с), когда рассматриваемый класс решений описывается определенной системой уравнений в частных производных с достаточно широким произволом в решении. Полученные системы уравнений содержат меньшее по сравнению с исходной задачей число независимых переменных и в этом смысле про ще исходной системы. Они могут быть исходными при построении некоторых классов точных решений, а также могут найти применение при решении отдельных типов кра евых задач. Построенные классы движений условно названы ранее основными, так как для случая других отличных от этого класса движений с аналогичным свойством линей ности, мы приходим к задаче об исследовании переопределенной системы уравнений высокого порядка с относительно малым числом неизвестных искомых функций и, ве роятно, здесь возможны лишь некоторые исключительные решения. При этом вопрос о полной классификационной теореме (теоремы такого типа для газодинамических те чений с вырожденным годографом скоростей были, например, получены в [2, 10]) для решений рассматриваемого класса остается открытым.  [c.177]

В большинстве практически важных случаев для описания докритического равновесного положения оболочки можно использовать линейные уравнения изгиба. При этом характеристики основного напряженно-деформированного состояния пропорциональны параметру нагрузок. Если же в уравнениях устойчивости сохраняются члены, которыми учитывается влияние перемещений и деформаций перед потерей устойчивости, то зависимость коэффициентов этих уравненй от параметра нагрузок в общем случае остается нелинейной. Эта зависимость становится линейной лишь тогда, когда пренебрегается как нелинейностью основного равновесного состояния, так и влиянием докритических деформаций. В этом случае решение задачи устойчивости сводится к определению собственных чисел и собственных элементов линейной однородной краевой задачи для системы дифферециальных уравнений с частными производными. Упрощенные уравнения такого типа позволяют выявить точки бифуркации и нашли широкое применение  [c.61]

В основе спектрального метода лежит стандартный математический аппарат, позволяющий приближенно решать дифференциальные уравнения в частных производных. Решение ищется в виде разложения по ряду базисных функций от пространственных переменных с конечным числом членов ряда п. Эффективный способ применения спектральных методов к решению нелинейных дифференциальных уравнений, описывающих гидродинамические процессы, предложен Орсегом 30]. Преимуществом спектрального метода является возможность точного удовлетворения граничных условий при правильном подборе базисных функций, впрочем, только для областей с простой геометрией. Кроме того, этот метод в определенных условиях позволяет получить более точное решение по сравнению с методом, основанным на интегрировании по контрольному объему. Однако применение спектрального метода к решению системы уравнений Навье—Стокса встречает значительные трудности. Число базисных функций п вычисляется как отношение наибольшего характерного геометрического масштаба поля течения к наименьшему. Например, в случае течения в ограниченной области пространства наибольший масштаб имеет порядок размеров этой области, а наименьший определяется толщиной вязкого слоя вблизи стенки. Для сложных пространственных задач и течения с большими числами Рейнольдса указанное отношение может быть достаточно велико. Очевидно, ошибка численного решения уменьшается с ростом числа базисных функций п. Приемлемая точность решения часто не может быть достигнута из-за непомерно возрастающего с ростом п объема вычислений. Кроме того, при применении спектрального метода ошибка решения носит глобальный характер (т.е. появление погрешности решения в какой-либо точке приводит к распространению ошибки на всю область независимых переменных). С увеличением степени нелинейности уравнений эффективность спектральных методов снижается. Поэтому спектральные методы используются в основном для исследования однородной или изотропной турбулентности или для расчета течения в областях простой формы.  [c.197]


Смотреть страницы где упоминается термин Частные случаи применения основного уравнения : [c.44]    [c.17]    [c.242]    [c.182]    [c.149]    [c.22]    [c.59]   
Смотреть главы в:

Метод конечных элементов в статике, динамике и устойчивости пространственных тонкостенных подкрепленных конструкций  -> Частные случаи применения основного уравнения



ПОИСК



К п частный

Уравнение основное

Уравнения основные

Частные случаи

Частный случай



© 2025 Mash-xxl.info Реклама на сайте