Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предельный периодический

Распределение предельно-периодических движений.  [c.221]

Таким образом, приближенно а равно 1,6 х. Таково приближенное значение периода предельного периодического движения, описываемого уравнением В.ан-дер-Поля.  [c.400]

Здесь обозначает значение в точке, имеющей кривизну, равную единице. Этот результат показывает, что в первом приближении кривая ( = вблизи внутренней границы ( = О кольца почти инвариантна при преобразовании Т и, вероятно, может быть сделана с еще большим приближением инвариантной присоединением членов высших степеней. Очевидно, предельные периодические движения, образуемые кривой С, нужно на этом основании рассматривать как устойчивые движения.  [c.184]


Распределение предельно-периодических движений. Предположим, что для рассматриваемой гамильтоновой системы неинтегрируемого общего типа имеется по крайней мере одно периодическое движение устойчивого типа. Всякое такое движение изображается замкнутой кривой С в многообразии М состояний движения.  [c.221]

О других типах движений. До сих пор мы рассматривали среди различных типов рекуррентных движений только периодические движения, предельно-периодические движения и некоторые другие простые типы рекуррентных движений. Такие рекуррентные движения почти наверное образуют бесконечную иерархию все более и более сложных типов, даже для динамических систем с двумя степенями свободы, которые мы в настоящий момент рассматриваем.  [c.239]

Предельно-периодические движения 221  [c.406]

Отсюда же следует, что предельное периодическое движение устойчиво в смысле Ляпунова. Полученная нами картина на фазовой плоскости (рис. 137) показывает, что при сделанных предположениях  [c.209]

Периодические течения представляют практический интерес в рео-метрии в предельном случае бесконечно малых деформаций, например когда может быть применимо уравнение (4-3.24). Действительно, в периодическом течении полная деформация, переводящая конфигурацию материала в некоторый момент времени  [c.172]

Кроме определения комплексной вязкости т], системы с периодическим течением можно использовать для определения дополнительных свойств функционала Q в предельном случае очень малых деформаций. Для обсуждения этой возможности необходимо рассмотреть приближение второго порядка для функционала выражаемое уравнением (4-3.25) и приводимое ниже  [c.206]

Критическим пунктом, подлежащим экспериментальной проверке, является вопрос о том, будет ли поведение, предсказываемое линейной теорией вязкоупругости, иметь место для реальных материалов в предельном случае бесконечно малых деформаций или же в предельном случае бесконечно малых скоростей деформаций (или, возможно, в случае, когда достаточно малы и те и другие). Следовательно, требуемые доказательства можно получить только при рассмотрении экспериментов с периодическим течением, проводимых при условиях, когда наблюдаются отклонения от линейного вязкоупругого поведения.  [c.229]

Характер движения и структура слоя при первом режиме движения были рассмотрены ранее ( 9-5, 9-6). Остановимся на режимах, характерных разрывом слоя. При увеличении скорости до величин, близких к предельной, предвестники разрыва слоя наблюдались в пристенной зоне. Эти местные разрывы, локальные воздушные мешки, имеющие в основном продольную протяженность, как правило, вызывались некоторым местным отличием состояния поверхности стенок. Дальнейшее небольшое повышение скорости до Уцр увеличивало частоту появления местных разрывов до их слияния по периметру канала. Возникал пробковый разрыв слоя, который также периодически исчезал, уступая место неустойчивому плотному слою. Наконец увеличение скорости сверх предельного значения полностью разрушало остатки предельного равновесия сил в слое и приводило к полному распаду плотной среды в гравитационно падающую взвесь с высокой концентрацией частиц.  [c.302]


Первоочередное применение средства снижения токсичности двигателей находят в условиях производства с ограниченным воздухообменом (строительные объекты, карьеры, шахты, гаражи и стоянки), складские помещения, теплицы, животноводческие фермы и т. д.). В таких условиях вероятность превышения предельно допустимых концентраций токсичных компонентов ОГ в атмосфере высока (рис. 60), поэтому в ряде случаев технология проведения работ предусматривает обязательное применение средств снижения токсичности двигателей. Расчет экономического эффекта от их применения основывается на условии обеспечения ПДК в атмосфере рабочих зон при их использовании в сравнении с базовым вариантом (установка дополнительной вентиляции, периодическая остановка работ в зоне повышенного загрязнения для проветривания, применение электротяги и т. д.). Годовой экономический эффект определяется по формуле  [c.111]

Однако, как установлено практикой, в случае действия на элементы конструкций нагрузок, периодически изменяющихся во времени по величине или по величине и направлению, разрушение материала происходит при напряжениях, значительно меньших предельных значений. С подобными действиями нагрузок приходится встречаться, как правило, при расчетах движущихся элемен-  [c.222]

Дальнейшее увеличение паросодержания и изменение структуры вьь текающего потока ограничиваются возможностями метода адиабатического дросселирования. Однако это можно реализовать искусственно следующим образом. Если при достижении предельной начальной температуры 175...180 °С резко уменьшить расход воды через образец, то перепад давлений на нем, а вместе с ним и давление на внутренней поверхности резко упадут до давления насыщения и вода закипит перед образцом. В этом случае через образец периодически подаются порции воды с паром. Подающаяся двухфазная смесь пульсирует. В периоды между этими пульсациями на входе в образец имеет место расслоение пара и  [c.79]

Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]

Заметим, что в автономной системе второго порядка, состояние которой изображается точками на фазовом круговом цилиндре, может встретиться новый тип бифуркации, который невозможен в случае фазовой плоскости, а именно бифуркация, связанная с рождением или исчезновением предельных циклов, охватывающих фазовый цилиндр. В отличие от фазовой плоскости, где устойчивый предельный цикл отображает автоколебательное движение в системе, устойчивый предельный цикл, охватывающий фазовый цилиндр, соответствует периодическому ротационному (вращательному) движению.  [c.52]

Диаграммы Ламерея на рис. 4.44 показывают, что в рассматриваемой системе все существующие периодические движения являются простыми (т. е. фазовая траектория предельного цикла замыкается после одного оборота). В системе не может быть сложных периодических движений в силу того, что кривые и = и (х) и и = и (т) непрерывны и ни в одной точке первого квадранта не имеют отрицательного наклона касательной.  [c.117]


Существуют три классических типа динамического движения равновесие периодическое движение, или предельный цикл квазипериодическое движение. Эти состояния называют аттракторами, поскольку в присутствии какого-либо затухания переходные отклонения подавляются и система притягивается к одному из трех перечисленных состояний Другой класс движений,характерных для нелинейных колебаний, который не сводится ни к одному из этих классических аттракторов,- непредсказуемые, если присутствует малая неопределенность начальных условий то этот класс движения часто связан с состоянием называемым странным аттрактором.  [c.6]

Алгебраическая, аналитическая, сложная, (поли-, суб-, супер-) гармоническая, обратная, ограниченная, круговая, дробно-линейная, мероморфная, многозначная, измеримая, симметричная, разрывная, скалярная, рациональная, модулярная, моногенная, мультипликативная, логарифмическая, однородная, квадратичная, силовая, степенная, (равномерно) непрерывная, неявная, собственная, однолистная, предельная, ортогональная, первообразная, примитивная, периодическая, показательная, целая, суммируемая, сферическая, убывающая, целочисленная, (не-) чётная. .. функция. Гамма-, линейная вектор-. .. функция. Главная, новая, однозначная. .. функция Гамильтона. Комплексно-сопряжённые, специальные, цилиндрические, квазипериодические, гиперболические, рекурсивные, трансцендентные, тригонометрические, элементарные. .. функции.  [c.22]

Самая низкая температура, которая может быть получена в испарителе (морозильной камере), определяется значением давления паров фреона, так как температура кипения фреона, как и любой другой жидкости, понижается с понижением давления. При постоянной скорости поступления жидкого фреона из конденсатора в испаритель через капиллярную трубку давление паров фреона в испарителе будет тем ниже, чем дольше работает компрессор. Если нет нужды добиваться понижения температуры в испарителе до предельно достижимого значения, то работа компрессора периодически останавливается путем выключения электромотора, приводящего его в действие. Компрессор выключается автоматом, следящим за поддержанием в холодильном шкафу заданной температуры.  [c.107]

ЛР1 говорить об автономных системах, то такие физические понятия, как автоколебания, мягкое и жесткое возбуждение автоколебаний, Затягивание и т.д. получили теперь твердую математическую основу в виде предельных циклов, теории бифуркаций, областей устойчивости в большом и т.д. Если говорить о неавтономных системах, то такие физические понятия как феррорезонанс, захватывание разных видов, получили математическую основу в теории периодических решений и их бифуркаций, а ряд других физических понятий, например, резонанс второго рода, асинхронное возбуждение и т.д. были вновь выдвинуты, отправляясь от математической теории [189].  [c.344]

Образом стационарного движения служит точка, а образом периодического движения — замкнутая линия (траектория) в пространстве состояний о них говорят соответственно как о предельной точке или предельном цикле. Если эти дви>кения устойчивы, то это значит, что соседние траектории, описываю-  [c.155]

В п-мерном пространстве состояний п— мультипликаторов определяют поведение траекторий в п—1 различных направлениях в окрестности рассматриваемой периодической траектории (отличных от направления касательной в каждой точке самой этой траектории). Пусть близкий к 1 мультипликатор отвечает некоторому /-му направлению. Остальные п — 2 мультипликаторов малы по модулю поэтому по соответствующим им п — 2 направлениям все траектории будут со временем прижиматься к некоторой двумерной поверхности (назовем ее 2), которой принадлежат 1-е направление и направление указанных касательных. Можно сказать, что в окрестности предельного цикла пространство состояний при t- oo оказывается почти двумерным (строго двумерным оно не может быть — траектории могут располагаться по обе стороны S и переходить с одной стороны поверхности на другую). Разрежем поток траекторий вблизи Е некоторой секущей поверхностью а. Каждая траектория, повторно пересекая о, ставит в соответствие исходной точке  [c.169]

Рассмотрим потерю устойчивости периодическим движением при переходе мультипликатора через —1. Равенство л = —1 означает, что начальное возмущение через интер)зал времени То меняет знак, не меняясь по абсолютной величине еще через период То возмущение перейдет само в себя. Таким образом, при переходе ц через значение —1 в окрестности предельного цикла с периодом То возникает новый предельный цикл с периодом 2То — бифуркация удвоения периода ). На рис. 20 условно изображены две последовательные такие бифуркации на рисунках а, б сплошными линиями показаны устойчивые циклы периодов 2То, 47 о, а штриховыми — ставшие неустойчивыми предыдущие циклы.  [c.170]

Учет влияния членов высших степеней в разложении момента в уравне НИН (98) привел бы к заключению, что размахи колебаний маятника в действительности не растут неограниченно. Движение стремится к некоторому периодическому режиму, параметры которого не зависят от начальных условий. Соответствующая этому режиму фазовая траектория представляет замкнутую кривую (рис. 438, а), называемую устойчивым предельным циклом.  [c.518]

На фазовой плоскости (ф, ф) рассматриваемому установившемуся периодическому движению соответствует замкнутая траектория (предельный цикл)  [c.546]

Определение периодических течений было дано в разд. 5-1. Следует повторить, что, поскольку такие течения представляют интерес в реометрии в предельном случае очень малых деформаций, определяющее уравнение (5-1.24) должно удовлетворяться только с точностью до членов первого порядка по величине деформации.  [c.194]

Необходимо подчеркнуть два обстоятельства. Во-первых, рассматриваемое здесь течение описывается уравнениями (5-4.11) — (5-4.13) и (5-4.21), (5-4.22), которые просто получаются из уравнений, описывающих стационарное плоское сдвиговое течение между двумя параллельными плоскими пластинами, умножением на периодический множитель Из уравнения (5-4.30) следует, что в предельном случае = О скорость сдвига у равна величине, которая была бы скоростью для стационарного плоского сдвигового течения, умноженной на тот же самый множитель. Переход от стационарного описания поля скоростей к эйлеровому периодическому течению путем умножения на является общим правилом для всех вискозиметрических течений. Эквивалентность дифференциальных уравнений для распределения скоростей в периодическом течении (для плоского сдвигового течения — это уравнение (5-4.23)) и для стационарного течения фактически представляет собой следствие пренебрежения силами инерции.  [c.198]


В соответствии с указанными условиями однозначности скорости фаз на входе в канал равны (коэффициент скольжения фаз фг, = = 1), слой не продувается и находится под действием сил предельного равновесия в плотном состоянии. Последнее означает, что твердый компонент достиг такой объемной концентрации, при которой все соседние частицы обязательно кон-тактируются друг с другом. Движение плотного слоя возникает за счет периодического нарушения предельного равновесия, приводящего к конечным деформациям сдвига без разрыва контактов. Однако согласно граничным условиям на стенке канала скорость частиц не падает до нуля. Так как для газовой среды (и)ст = 0, то Фг с,т= ( т/ )ст—>-оо. Наконец, условие ф1,= 1 на входе в канал не означает, как это обычно полагают, автоматического равенства скоростей фаз непродуваемого слоя по длине канала. Предварительные опыты показали, что при определенных условиях и в ядре движущегося слоя возможно небольшое проскальзывание фаз потока. Если пренебречь отмеченными смещениями скорости компонентов слоя, т. е. если положить фч,= 1, то v vi = v n-Если дополнительно принять, что концентрация (пороз-ность) движущегося плотного слоя неизменна (p = onst), то тогда взамен уравнения сплошности (1-30) приближенно получим  [c.288]

При дифференциальном методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием. При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и ноннусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Комплексный метод характеризуется измерением суммарного noi asa-теля качества, на который оказывают влияния отделыгые его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др. контроль положения профиля по предельным контурам и т. п.).  [c.111]

В заключение остановимся на вопросе о возможном числе химических элементов в природе. В связи с открытием все новых и новых заурановых элементов в последние годы невольно встает вопрос о числе всех возможных и о числе еще не открытых химических элементов. Для оценки предельного номера Z, которым заканчивалась бы периодическая система, сошлемся на два критерия а) ядерный и б) атомный.  [c.146]

Рождение устойчивого предельного цикла на торе означает синхронизацию колебаний ) — исчезновение квазииериодического и установление нового периодического режима. Это явление, которое в системе со многими степенями свободы может произойти многими способами, препятствует возникновению режима, представляющего собой суперпозицию движений с большим числом несоизмеримых частот. В этом смысле можно сказать, что вероятность реального осуществления именно сценария Ландау — Хопфа очень мала (этим не исключается, конечно, в частных случаях возможность возникновения нескольких несоизмеримых частот прежде, чем произойдет их синхронизация).  [c.162]

Вернемся к обсуждению возможных результатов взаимодействия разных периодических движений. Явление синхронизации упрощает движение. Но взаимодействие может разрушить квазипериодичность также и в направлении существенного усложнения картины. До сих пор молчаливо подразумевалось, что при потере устойчивости периодическим движением возникает в дополнение к нему другое периодическое движение. Логически же это вовсе не обязательно. Ограниченность амплитуд пульсаций скорости обеспечивает лишь ограниченность объема пространства состоянии, внутри которого располагаются траектории, соответствующие установившемуся режиму течения вязкой жидкости, но как выглядит картина траекторий в этом объеме априори ничего сказать нельзя. Траектории могут стремиться к предельному  [c.163]

Из рис. 16.21 видно, что в предельном случае кривая, изображающая процесс сжатия, пересечет в точке 2" линию V = У р. Так как объем действительно поступающего в цилиндр свежего газа равен У— Ур, то при Рг = Р2 " засасывание воздуха в цилиндр прекращается и производительность компрессора становится равной нулю при этом поршень работающего компрессора периодически сжимает одно и то же количество газа. Расчет показывает, что в случае политропического сжатия (п = 1,2) давление ро при Уер1Ур, равном 0,01 и 0,03, составляет соответственно 225 и 70 бар, т. е. сильно уменьшается с увеличением У р.  [c.543]

В предельном случае модельная структура пристенного турбулентного движения состоит из трех элементов 1) вязкой среды возле твердой поверхности 2) крупномасштабных образований (крупномасштабная турбулентность), отрываюшцхся от вязкой среды в результате волнового взаимодействия вязкой и турбулентных сред и 3) турбулентной среды в основном потоке, состоящей из мелкомасштабной турбулентности, зависящей от предыстории движения/33-56/. Крупномасштабная турбулентность, разрушаясь, поддерживает мелкомасштабную турбулентность. Мелкомасштабная турбулентность стремится к однородной турбулентности однако крупномасштабные вязкие струи поддерживают неоднородную турбулентность. Таким образом, пристенная турбулентность генерируется в результате волнового взаимодействия вязкой среды с турбулентной и только в результате такого взаимодействия поддерживается эта турбулентность. Если бы на время удалось приостановить приток крупных образований в турбулентную среду со стороны вязкого подслоя, то в ядре потока образовалось бы движение, аналогичное молекулярному движению разреженных газов, т.е. со скольжением относительно твердой поверхности при этом имелось бы постоянное значение турбулентной вязкости. По-видимому, такое явление имеет место, но периодического характера. Наличие крупных образований между вязкой и турбулентной средами сглаживает это скольжение и образуется плавное изменение поля скоростей. Однако влияние вязких струй на турбулентное ядро потока с удалением от стенки уменьшается и при определенных условиях в ядре потока имеет место однородная турбулентность. При обычных экспериментальных исследованиях кинематические параметры на границе вязкой и турбулентной сред осредняются в пространстве и во времени /33-56/.  [c.51]

Мы выяснили, что существование энергетических зон — важнейшая особенность энергетического спектра электронов в кристалле. Построение энергетических зон — сложная задача теории твердого тела и, например, изложение методов построения зон выходит за рамки данного курса. Полезно дать предсгавление о виде энергетических зон и связанных с ними ферми-поверхностей в простом приближении. В качестве такого мы выбрали модель пустой решетки, т. е. решетки, характеризующейся исчезающе малым по величине периодическим потенциалом. Ввиду предельной слабости потенциала энергетические зоны пустой решетки строятся на основе приближения свободных электронов.  [c.83]


Ранее мы выяснили, что конденсация атомов (или ионов и электронов) приводит к понижению энергии системы и является вследствие этого энергетически выгодным процессом. Поэтому в невозбужденном состоянии при предельно низких температурах все тела находятся в конденсированном состоянии, причем, за исключением гелия,—это твердые кристаллические тела. Гелий при нормальном давлении — жидкость, но при давлении в 30 кбар он также становится кристаллом. Существуют различные подходы к объяснению самого факта существования в твердом теле периодического расположения атомов (трансляционной симметрии). Так, согласно теореме Шенфлиса, всякая дискретная группа движений с конечной фундаментальной областью (т. е. элементарной ячейкой) имеет трехмерную подгруппу параллельных переносов, т. е. решетку [22]. Можно объяснять необходимость существования кристаллической решетки, а в конечном счете и вообще симметричного расположения атомов, исходя из третьего закона термодинамики. Согласно этому закону, при приближении к абсолютному нулю температуры энтропия системы должна стремиться к нулю. Но энтропия системы пропорциональна логарифму числа возможных комбинаций взаимного расположения составных частей системы. Очевидно, любое не строго правильное расположение атомов влечет за собой большое число равновозможных конфигураций атомов и приводит к относительно большой энтропии, и только строго закономерное расположение атомов может быть единственным. Поэтому равная нулю энтропия совместима только со строго повторяющимся взаимным расположением составных частей тела [1]. Иногда симметричность расположения атомов в кристалле объясняют исходя из однородности среды.  [c.124]


Смотреть страницы где упоминается термин Предельный периодический : [c.223]    [c.13]    [c.45]    [c.78]    [c.98]    [c.114]    [c.230]    [c.281]    [c.356]    [c.157]    [c.157]    [c.160]    [c.121]   
Динамика машинных агрегатов на предельных режимах движения (1977) -- [ c.36 , c.264 ]



ПОИСК



Итерационный периодического предельного режима

Итерационный почти периодического предельного режима

Нахождение периодического предельного режима.движения ротора

Периодические движения, классификация предельно

Периодические двпзиенип, классификация предельно

Построение итерационного процесса для отыскания периодического предельного режима

Предельно-периодические движения

Предельный почти периодический

Распределение предельно-периодических движений

Табулирование к периодическому предельному



© 2025 Mash-xxl.info Реклама на сайте