Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы динамики материальной точки

ОСНОВЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.160]

ОСНОВЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ ПЕРЕМЕННОЙ МАССЫ  [c.593]

Глава тринадцатая ОСНОВЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.147]

Учебник написан в соответствии с 85-часовой программой курса теоретической механики для студентов немашиностроительных специальностей втузов. В нем излагаются основы кинематики, динамики материальной точки п механической системы, а также статики твердого тела даются методические указания к решению задач, примеры этих решений, элементы самоконтроля и задачи для самостоятельной работы студентов. Приложение, содержит элементы векторного исчисления.  [c.2]


В основу многих динамических расчётов в строительной механике положены данные теоретической и прикладной механики — главным образом динамики материальной точки и системы. Поэтому развитие вопроса о сопротивлении материалов действию динамических нагрузок должно быть рассматриваемо в тесной связи с развитием смежных вопросов динамики в механике.  [c.769]

Курс открывается кинематикой точки и твердого тела. В нем подробно изложена динамика материальной точки и системы точек, Центральное место отведено основам аналитической механики, методы которой применяются и в релятивистской динамике  [c.2]

В механике избран традиционный путь, начинающийся с законов Ньютона, динамики материальной точки. Вся электродинамика изложена на основе учения об электромагнитном поле в вакууме, причем общие его уравнения предшествуют частным случаям. В квантовой механике изучению основных вопросов предпослана пропедевтическая тема, содержащая решение простейших одномерных задач еще без применения специального математического аппарата. В статистической физике в основу положен квантовый подход, что позволяет проще и последовательнее дать ее исходные положения и получить основные выводы.  [c.4]

В основе этой части механики лежит система аксиом — положений, принимаемых без доказательств (без выводов). Аксиомы механики (и любой другой точной науки)—это выраженные в сжатой форме основные законы, устанавливающие причинные связи. Система аксиом добыта на основе опыта здесь опыт понимается не как отдельный эксперимент, а как результат многочисленных наблюдений над явлениями природы и над человеческой практикой. Аксиомы механики мы рассмотрим в главе, посвященной динамике материальной точки.  [c.12]

Теоретическая механика является той частью общей механики, которая изучает движения материальных точек, их дискретных систем и абсолютно твердых тел. Ясно, что факты, найденные в теоретической механике, отражают наиболее общие закономерности механических движений, так как при их установлении приходится почти полностью абстрагироваться от конкретной физической природы реальных тел, рассматривая лишь их главные механические свойства. Законы, установленные в теоретической механике, как и другие законы естествознания, объективно отражают реально существующую действительность. На основе законов, установленных в теоретической механике, изучается механика деформируемых тел теория упругости, теория пластичности, гидродинамики, динамика газов. Следовательно, теоретическая механика является фундаментом общей механики. Отчасти из-за исторических  [c.18]


Второй закон Ньютона положен в основу составления систем дифференциальных уравнений движения материальной точки. В связи с этим второй закон Ньютона иногда называют основным законом динамики.  [c.318]

Основой динамики абсолютного движения материальной точки является второй закон Ньютона, который формально охватывает и первый закон Ньютона — закон инерции. Действительно, если предполагать, что масса точки не зависит от времени, то из соотношения (П1.5Ь) вытекает, что при равенстве нулю равнодействующей Е сил, приложенных к точке, равно нулю и ускорение т. е. материальная точка движется по инерции равномерно и прямолинейно.  [c.441]

В то время как первые два закона Ньютона относятся к одной материальной точке, третий закон рассматривает взаимодействие двух материальных точек и является основой динамики системы материальных точек.  [c.17]

ОСНОВЫ ДИНАМИКИ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК  [c.156]

Книга издается в двух томах, первый том вышел в 1971 г. Во втором томе рассмотрены методы изучения движения машин с учетом действующих сил на основе теорем и принципов динамики системы материальных точек и на основе принципа Даламбера. Приведен силовой расчет механизмов. Рассмотрены вопросы неравномерности хода машин, разновидности трения в машинах и их законы.  [c.2]

МЕТОД ИЗУЧЕНИЯ ДВИЖЕНИЯ МАШИН С УЧЕТОМ ДЕЙСТВУЮЩИХ СИЛ НА ОСНОВЕ ПРИМЕНЕНИЯ ТЕОРЕМ И ПРИНЦИПОВ ДИНАМИКИ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК  [c.13]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

ОСНОВЫ ДИНАМИКИ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК 17.1. Уравнение поступательного движения твердого тела  [c.176]

При изучении динамики системы материальных точек очень большое значение имеет уменье пользоваться теоремами при решении конкретных задач, на основе анализа связей выбирать ту пли иную теорему, решающую задачу о движении без введения в рассмотрение сил реакции связей, которые не определяют самого движения, а лишь накладывают ограничения на перемещения системы.  [c.333]

В основу динамики точки положены законы Ньютона, устанавливающие зависимость ускорения материальной точки от сил, действующих на эту точку. А всякое движение материальной точки изучается только по отношению к некоторой системе координат и определяется силами, действующими в ней на данную точку.  [c.43]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]


Динамика, основы которой были заложены Ньютоном, рассматривала только свободные материальные точки и системы это была скорее небесная механика , чем земная. Вместе с тем для развития техники и, в частности, для расчета машин необходимо было разработать динамику несвободных систем — без этого нельзя найти усилия, действующие во всех звеньях машины, чтобы затем рассчитать их на прочность.  [c.77]

Итак, согласно второму закону Ньютона произведение массы любой материальной точки на ее ускорение относительно инерциальной системы отсчета равно сумме всех сил, действующих на данную. точку со стороны других тел. Второй закон является одним из фундаментальных законов природы. Он лежит в основе того раздела механики, в котором рассматривается движение материальных точек в зависимости от действия сил. Этот раздел механики называется динамикой.  [c.37]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]

Эта глава посвящена трем вопросам динамике материальной точки, основы которой изучались в курсе физики средней школы, применению элементов математического анализа к физике и применению начал векторного исчисления, изложенных в гл. 2. Мы составим и решим уравнения движения для некоторых простых случаев, имеющих отношение к теории лабораторных работ по физике. Эти уравнения I описывают движение заряженных частиц в Vi-(vi f однородных электрических и магнитных I полях, т. е. явления, нашедшие исключи-/ тельно широкое применение в экспериментах I тальной физике. Глава заканчивается по----- дробным анализом различных преобразований от одной системы отсчета к другой.  [c.112]

Книга включает в себя элементы теории скользящих векторов, геометрическую и аналитическую статику, динамику материальной точки и системы материальных точек, динамику твердого тела, аналитическую динамику, элементы теории удара и элементы специального принципа относительности Эйнштейна. В основу кинематики положено понятие сложного движения, базирующееся на теории скользящих векторов. В статике большое внимание уделено методу возможных перемещений. В динамике точки более подробно изучаются центральные движения и относительные движения. При изложении основных теорем динамики системы материальных точек автор следовал методам Н. Е. Жуковского и Н. Г. Че-таева, продолжавших идеи Лагранжа. Это направление проходит через весь курс и особенно подчеркивается при рассмотрении решений задач. В раздел аналитическая дина-  [c.7]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]

Аксиома 1 (принцип инерции). Всякая изолированная материальная точка находится в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не выведут ее из этого состояния. Это знакомая нам первая аксиома статики (см. 1.2). Принцип инерции лежит в основе статики и динамики потому, что содержит в себе как аксиому инерции покоя (статика), так и аксиому инерции движения (динамика). Таким образом, если на материальное тело (точку) не действуют никакие силы или действует уравновешенная система сил и 2Л1о(/ )=0, то относительно  [c.123]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Для изучения движения материальной точки в неподвижной системе координат, как уже известно, простым и удобным математическим аппаратом являются методы динамики, созданной на основе законов Ньютона. Эти методы можно перенести и на изучение относительных движений. Различия в относительном и абсолютном движениях точки заключаются в том, что относительное и абсолютное ускорения точки в этих движениях различны и находятся между собой в зависимости, определяемой кинематической теоремой Кориолиса. Как показано в кинематике, различие вызывается фактически переносным движением подвижной системы отсчета, благодаря которому наблюдатель, связанны с этой системой отсчета, изменяет свое ноло-  [c.230]

Вектор S, равный по величине произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению, называется силой инерции материальной точки и считается приложенным к этой точке. Представление о силах инерции будет расширено в гл. XXX в связи с рассмотрением динамики относительного движения. Сейчас удовольствуемся принятым формальным определением силы инерции и заметим, что в результате такого подхода уравнение динамики (2) свелось к уравнению равновесия (19) материальной точки под действием приложенной силы и силы инерции. Изложенный прием сведения задачи динамики к задаче статики лежит в основе метода кинетостатики, который будет в более общем виде изложен в гл. XXVIII. По своей сути метод этот относится к первой задаче динамики. Как выяснится из следующих примеров, данный метод особенно полезен при рассмотрении движений в естественной форме.  [c.22]

В основе вывода первых двух общих теорем динамики—количества движения и момента количества движения —лежит идея выделения из всех сил, приложенных к системе, внутренних сил взаимодействия меладу материальными точками системы. Внутренние силы в своей совокупности не могут влиять на такие суммарные меры движения, как главный вектор и главный момент количеств движения точек системы. Только внешние силы, дсйст-вующие на точки системы со стороны внешних тел, не принадлежащих к рассматриваемой системе, могут изменять главный вектор и главный момент количеств движения системы. В использовании этого свойства внутренних сил, представляющего собой одно из важнейших следствий третьего закона Ньютона, заключается главное значение двух первых o6uj,hx теорем динамики.  [c.105]

В современной астрофизике анализ и пониманне внутренних движений в звёздах, эволюции звёзд и эволюции различных туманностей невозможны в рамках динамики систем дискретных материальных точек или в рамках гидростатики жидких масс— теорий, которые до последнего времени служили основным источником различного рода моделей и представлений в классической астрономии. В настоящее время изучение движений небесных объектов как газообразных тел должно дать ключ для решения главных проблем космогонии, и только таким путём можно найти объяснение и толкование ряда наблюдаемых эффектов. Сейчас стало очевидным, что в основу концепций для исследования небесных явлений необходимо положить постановки и решения ряда динамических задач о движениях газа, которые можно рассматривать как теоретические модели, охватываю-ш,ие суш ественные особенности движения и эволюции звёзд и туманностей. Для построения и исследования таких моделей необходимо использовать методы, аппарат и представления современной теоретической газовой динамики—аэродинамики— и применительно к проблемам астрофизики поставить и разрешить соответствующие механические задачи.  [c.273]

При расчетах, выполняемых с учетом сил инерции, применяют известный из курса теоретической механики принцнп Даламбера, на основе которого, прикладывая к движущейся материальной точке, помимо активных и реактивных сил, ее силу инерции, сводят задачу динамики к задаче статики. Напомним, что сила инерции материальной точки равна по величине произведению массы точки на ее ускорение и направлена в сторону, обратную ускорению.  [c.354]

Второй том книги Валле Пуссена Лекции по теоретической механике является продолжением первого тома. В нем излагается динамика системы материальных точек, в частности, динамика твердого тела и основы гидромеханики. Оба тома имеют сквозную нумерацию пунктов и рисунков.  [c.4]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]


Смотреть страницы где упоминается термин Основы динамики материальной точки : [c.153]    [c.7]    [c.128]   
Смотреть главы в:

Техническая механика 1975  -> Основы динамики материальной точки

Техническая механика  -> Основы динамики материальной точки



ПОИСК



Глава тринадцатая. Основы динамики материальной точки

ДИНАМИКА Динамика точки

ДИНАМИКА ОСНОВЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

ДИНАМИКА ОСНОВЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

Динамика Динамика материальной точки

Динамика материальной точки

Динамика точки

Материальная

ОСНОВЫ ДИНАМИКИ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК

Основы динамики материальной точки Понятие о силах инерции

Основы динамики материальной точки переменной массы

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте