Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первые интегралы. Законы сохранения

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]


ПЕРВЫЕ ИНТЕГРАЛЫ. ЗАКОНЫ СОХРАНЕНИЯ  [c.70]

При интегрировании уравнения движения в центральном поле нет необходимости выписывать сами уравнения, достаточно воспользоваться первыми интегралами законом сохранения энергии  [c.125]

Общим моментом различных подходов к проблеме интегрирования гамильтоновых систем, изложенных в 1, является наличие полного набора независимых коммутирующих интегралов. В этом параграфе мы укажем некоторые общие методы поиска первых интегралов — законов сохранения . Самым простым и эффективным из них является  [c.138]

Общим моментом указанных в главе 4 различных подходов к проблеме интегрирования гамильтоновых систем является наличие достаточно большого числа Независимых первых интегралов — законов сохранения . К сожалению, в типичной ситуации интегралы не только не удается найти, но они вовсе не существуют, так как траектории гамильтоновых систем, вообще говоря, не ложатся на интегральные многообразия малого числа измерений. Здесь речь идет, конечно, о существовании интегралов во всем фазовом пространстве полный набор независимых интегралов всегда существует в малой окрестности неособой точки.  [c.226]

После подстановки в явной форме выражения для/(г , Т о, АГо) в левой части формулы (69) получается эллиптический интеграл, и таким образом, задача сводится к одной простой квадратуре — эллиптическому интегралу. Интегралы такого рода хорошо изучены, и для них составлены специальные таблицы. Вычислив этот интеграл, т. е. найдя t как функцию от л и трех произвольных постоянных S, Ко и То, определяемых начальными данными, а затем разрешив полученное соотношение относительно г, нужно вернуться к уравнениям (66) и подставить в их правые части найденное выражение г. Тогда р vi q тоже будут найдены как функции t и указанных трех произвольных постоянных. Уравнения (60) полностью проинтегрированы, причем были использованы два готовых первых интеграла, даваемых законами сохранения, и лишь один раз пришлось вычислить интеграл.  [c.198]

В предыдущих главах мы уже встречались с понятием первого интеграла уравнений движения. Роль таких первых интегралов играли различные функции, которые во время движения не изменяются в силу законов сохранения — закона сохранения количества движения (импульса), закона сохранения момента количества движения (кинетического момента системы), закона сохранения механической энергии и т. д. Формулы, выражающие  [c.265]

Для дальнейшего обсуждения первых интегралов уравнений движения (законов сохранения) требуется использовать аппарат вариационного исчисления, который нужен нам также и для иных целей, связанных с изучением движений в потенциальных полях. Поэтому в следующем параграфе будут кратко изложены элементы вариационного исчисления, а затем, применяя соответствующий аппарат к теории движения в потенциальных полях, мы вернемся, в частности, к вопросу об общей теории первых интегралов уравнений движения.  [c.271]


Связь законов сохранения (первых интегралов) со свойствами пространства и времени.  [c.286]

В этом параграфе вариационный подход к задаче механики и, в частности, полученная в 4 общая формула для вариации функционала будут использованы для того, чтобы установить связь между законами сохранения, которые были получены в предыдущих главах, и общими свойствами пространства и времени, которые находят свое выражение в инвариантности законов механики относительно преобразований систем отсчета. Установление этой связи позволит понять внутреннюю природу законов сохранения и причины, по которым эти законы существуют. Такое понимание особенно важно, ибо оно иногда позволяет предвидеть первые интегралы и тем самым облегчить исследование уравнений, описывающих движение.  [c.286]

Если на твердое тело действуют силы потенциального поля, то первым интегралом будет, справедливый в этом случае, закон сохранения механической энергии  [c.181]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения количества движения или проекции количества движения на ось. Рассмотрим эти законы сохранения для точки и системы одновременно, считая материальную точку механической системой, состоящей из одной точки.  [c.261]

Соотношения (25 ) являются первыми интегралами дифференциальных уравнений движения системы (3). Закон сохранения кинетического момента системы показывает, что одни внутренние силы не могут изменить кинетический момент системы так же, как они не изменяют ее количество движения.  [c.272]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения  [c.287]

С математической точки зрения закон сохранения энергии дает один из первых интегралов уравнений движения, так как уравнение, представляющее закон сохранения энергии, содержит только координаты и скорости, т. е. первые производные от координат по времени, и не содержит ускорений (вторых производных от координат по времени) поэтому иногда выражение закона сохранения энергии называют интегралом энергии или интегралом живых сил.  [c.233]

Как будет показано ниже, из первых интегралов (4.4.5), являющихся следствиями законов сохранения массы, импульса и энергии смеси, и из уравнений состояния фаз но параметрам перед волной (состояние о Уо = —/ о, Ро, То, рю, рзо) можно определить параметры за волной (состояние е Ve, Ре, Те, pie, Pze), причем указанные соотношения между параметрами перед (о) и за (е) волной не зависят от интенсивности межфазного взаимодействия, которое влияет лишь на структуру волны, или, другими словами, на то, как происходит переход из состояния о в состояние е.  [c.337]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Первый из этих интегралов отвечает закону сохранения импульса в поперечном сечении струи, второй—полного теплосодержания /Го=7 -1----температура торможения, теплоем-  [c.89]

Если движение системы материальных точек происходит под действие г,- внутренних и внешних сил, которые являются потенциальными, то сумма кинетической и потенциальной энергий системы сохраняет постоянную величину. Это — закон сохранения механической энергии. С математической точки зрения закон сохранения механической энергии является одним из первых интегралов уравнений движения, так как уравнение, характеризующее закон сохранения механической энергии  [c.377]


Полученное соотношение является первым интегралом уравнений движения системы и сохраняет постоянное значение во все время движения системы. Постоянная определяется из начальных условий. В этом и заключается закон площадей в динамике системы материальных точек, или закон сохранения момента количества движения.  [c.318]

Первые интегралы (8.7) и (8.8), определяющие второе и третье следствия, называются законами сохранения количества движения материальной системы.  [c.183]

Первые интегралы (9.11) и (9.12), определяющие второе к третье следствия, называются законами сохранения момента количеств движения материальной системы.  [c.205]

С математической точки зрения этот закон сохранения является первым интегралом уравнений движения, ибо он является соотношением между временем, координатами и их первыми производными, содержащим произвольную постоянную.  [c.124]

Построение точного решения, или понижение порядка системы — не единственная цель поиска первого интеграла. Глобальные первые интегралы выражают обычно некоторые законы сохранения, представляющие самостоятельный интерес, как содержательный физический факт. Установление таких законов бывает интересным даже тогда, когда общее решение задачи известно. В этой ситуации представляет интерес следующий прием.  [c.124]

Доказанные три теоремы могут привести к первым интегралам и, в частности, при выполнении специальных условий — к законам сохранении количества двигкения системы или его проекции па данную ось (см. п. 1.4 гл. XIX).  [c.448]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Построим для какого-нибудь полюса, например начала О координат, годограф переменного с течением времени вектора К. Если сумма / ( ) внешних активных сил и реакций перпендикулярна оси Ох и, следовательно, справедлив первый из интегралов (31.12), то рассматриваемый годограф будет плоской кривой, и плоскость её будет перпендикулярна оси Ох. Когда сумма векторов R параллельна оси Oz и, следовательно, выполняются два первые равенства (31.12), годограф вектора К будет отрезком прямой, параллельной оси Oz. Наконец, когда и, следовательно, ймеют место все три интеграла (31.12), или, иначе говоря, соблюдается закон сохранения движения центра масс, рассматриваемый годограф вырождается в точку.  [c.306]

Рассмотренным выше (см. пункты 2—4) принципам соответствуют законы сохранения классической механики — это, так сказать, физическая точка зрения. С аналитической же точки зрения они дают зависимости, которые при соблюдении определенных условий приводят к интегралам дифференциальных уравнений движения. Разработка этих принципов в течение первой половины XVIII в. облегчала установление такой их связи с дифференциальными уравнениями движения. Но для того чтобы их объединить в общей аналитической трактовке (а это, как мы увидим, стало делом Лагранжа), понадобилось установление принципов другого рода, что также стало делом XVIII в. Почему это понадобилось тогда же Ответ таков. В работах, на которые мы ссылались в этой главе, вполне очевидны две тенденции. Их авторы рады любой возможности показать значение своих результатов для познания закономерностей системы мира , т. е. Солнечной системы, а движение небесных тел — движение свободное, на него не наложены никакие связи. Одновременно в этих работах отмечается польза вводимых или обобщаемых принципов при рассмотрении системы со связями— в первую очередь то, что при соблюдении известных условий можно избежать явного введения трудно определяемого воздействия различных препятствий . Ведь задачи со свтзями земной механики еще не имели сколько-нибудь общей теории  [c.130]

Вместе с тем, установленная Лагранжам взаимосвязь симметрия — сохранение не была им явно сформулирована в виде некоторого общего результата. Если Ньютон постулировал с самого начала определенные свойства пространства и времени, то Лагранж не высказывался непосредственно о тех принципах пространственно-временной симметрии, которые наряду с общей формулой динамики были им неявно положены в основу аналитической механики. С одной стороны, это было связано с общей тенденцией, характерной для механики XVIII и даже первой половины XIX в., избегать обсуждения аксиоматических основ механики с другой — с известной переоценкой динамических законов типа основных уравнений движения механики и недооценкой принципов пространственно-временной симметрии. Рассмотрение законов сохранения как первых интегралов уравнений движения механических систем могло поддерживать иллюзию, что взаимосвязь симметрия — сохранение имеет лишь формально-вычислительное значение и в своей общности и фундаментальности существенно уступает самим уравнениям движения или иной форме динамического закона (при этом не-оол редко упускалось из виду, что структура уравнений сама, в свою очередь, базировалась на определенных представлениях о свойствах симметрии пространства и времени).  [c.230]


Так как преобразования евклидовой] симметрии , образующие подгруппу группы точечных преобразований, могут рассматриваться и как преобразования, образующие подгруппу группы канонических преобразований, то шести бесконечно малым преобразованиям этой группы должны, в согласии с лиевским вариантом взаимосвязи, отвечать шесть интегралов движения — законов сохранения количества движения и момента количества движения. Конкретный вид генераторов евклидовой группы позволяет благодаря соотношениям (15) вычислить соответствующие производящие функции, отождествляемые с шестью упомянутыми первыми интегралами.  [c.234]

После установления С. Ли канонического варианта взаимосвязи, в силу отождествления первых интегралов с производящими функциями бесконечно малых канонических преобразований симметрии системы, теорему Пуассона — Якоби можно было бы сформулировать следующим образом инвариантность закона сохранения системы (интеграл движения Gj) относитель-ппо но бесконечно малого канонического преобразования с производящей функцией ( 2 имеет следствием постоянство соответствующих скобок Пуассона Gil, которые в некоторых случаях дают новый закон сохранения = = [Gi, G ] = onst (в остальных случаях, как известно, [G , G2I обращаются в нуль или выражаются как функции G и G . Большого практического значения теорема Пуассона — Якоби не имела, так как для клас-ческих интегралов, связанных с евклидовой группой и однородностью времени, она приводила к тем же самым, т. е. уже известным, интегралам (например, [Мх, Му = Mz, [Мх, Ру = Pz,. .., где Мх, Му, Mz, Рх, Ру, Pz — соответственно х, г/, z-компоненты момента импульса и импульса) или вообще не давала интегралов, приводя к обращению в нуль скобок Пуассона (например, [Рх, Ру] = [Рх, Pz] = [Ру, Pz] = [Н, Рх] = [Я, Ру] =. .. = 0).  [c.238]

Соотношение (34), записанное сразу же с учетом отсутствия внешних сил, дает возможность непосредственно десяти генераторам Р-группы сопоставить десять первых интегралов, аналогичных дазвестйым законам сохранения нерелятивистской механики. Например, четырем трансляциям 8xi = отвечает закон сохранения энергии — импульса  [c.244]

Первый член этого выражения представляет собой не что иное как интеграл столкновений Больцмана-Боголюбова [см. выражение (3.1.73)] ). Второй член, описывающий основной вклад эффектов запаздывания, впервые был получен Климонтовичем [34]. Им же была показана необходимость учета этого члена в законах сохранения энергии и импульса, включающих главные поправки по плотности к неравновесным термодинамическим величинам. Более подробное обсуждение свойств кинетического уравнения с интегралом столкновений (3.3.5) читатель найдет в книге [35].  [c.199]

Остановимся кратко на некоторых попытках улучшить уравнение Левинсона. На первый взгляд источником проблем является незатухающая память в интеграле столкновений (4.5.14), благодаря которой скорость изменения одночастичной функции распределения в момент времени t зависит от всей предыстории процесса. Поскольку квазичастицы в реальных системах имеют характерное время жизни г ,, ядро в немарковском интеграле столкновений должно затухать за время t — t т . Качественно этот эффект можно учесть, вводя обрезающий множитель ехр — t — t )/т в интеграл столкновений Левинсона [94]. В численных расчетах было обнаружено, что решения улучшенного уравнения Левинсона ведут себя на больших временах более устойчиво (в частности, исчезают отрицательные значения /) и наблюдается переход к марковскому режиму, но, тем не менее, при t оо функция распределения не стремится к равновесной. Дело в том, что введение квазичастичного затухания в интеграл столкновений Левинсона нарушает закон сохранения энергии ). Поэтому с течением времени растут числа заполнения возбужденных состояний, т. е. происходит нефизический перегрев системы. Хаг и Баньян [93] предложили феноменологическое ядро в интеграле столкновений Левинсона для электрон-фононной системы, которое приводит к более разумному поведению функции распределения электронов в марковском пределе. Стационарное решение кинетического уравнения оказалось близким к распределению Ферми, однако точного равенства этих функций достигнуто не было. Впрочем, подбор модельных выражений для ядер в интеграле столкновений Левинсона нельзя рассматривать всерьез как преодоление трудностей немарковской кинетики. Можно показать, что любое улучшение уравнения Левинсона в этом направлении ведет к нарушению закона сохранения энергии, причем стационарное решение не совпадает  [c.313]

Неравновесные корреляции, связанные с сохранением энергии. Мы уже говорили в разделах 3.3.4 и 4.3.3, что закон сохранения энергии в кинетической теории требует особого внимания, поскольку, с одной стороны, энергия является интегралом движения и поэтому должна быть включена в набор базисных динамических переменных, но, с другой стороны, среднее значение энергии зависит как от одночастичной, так и от двухчастичной функции распределения. Иначе говоря, баланс энергии определяется не только эволюцией одночастичной функции распределения, но и динамикой корреляций. Напомним, что учет корреляций, связанных с сохранением энергии, является, по существу, основной идеей кинетической теории Энскога для плотных и сильно взаимодействующих систем. На первый взгляд кажется, что для слабо неидеальных газов учет неравновесных корреляций не столь важен, во всяком случае, — в борновском приближении для интеграла столкновений. В марковском режиме эта точка зрения подтверждается нашим анализом, проведенным в разделе 4.3.4. Действительно, мы видели, что интеграл столкновений (4.3.58) совпадает с интегралом столкновений Улинга-Уленбека, если пренебречь вкладом корреляций в двухчастичную матрицу плотности. Как выяснится позже, в немарковском режиме ситуация меняется и корреляции, связанные с законом сохранения энергии, дают вклад в интеграл столкновений уже в борновском приближении. Более того, мы покажем, что именно учет корреляций обеспечивает существование равновесного решения немарковского кинетического уравнения ).  [c.314]

Заметим, что, как и система точечных вихрей [Гешев, Черных, 1983], система вихревых частиц в круге допускает интегралы движения, независящие от времени - инварианты. Во-первых, это сам гамильтониан Я,у (6.59), который соответствует кинетической энергии движения завихренной жидкости. Во-вторых, поскольку область движения жидкости - круг, то в силу инвариантности гамильтониана (6.59) относительно вращений существует интеграл движения, связанный с законом сохранения момента импульса  [c.378]

Прошло пятьдесят лет с тех пор, как в математике утвердились понятия группы и алгебры Ли. Термин алгебра Ли введен Г. Вейлем в 1934 г. [ 1, с. 467]. На языке групп Ли [ 2] и их инвариантов формулируется одна из основных задач аналитической механики, связанная с интегрированием уравнений движения. Понятие алгебраических инвариантов введено Дж. Сильвестром в 1851 г. и использовано Ф. Клейном для классификации различных геометрий. В работе [ 3], известной под названием Эрлангенской программы , Ф. Клейн предлагает любое многообразие задавать системой инвариантов относительно группы преобразований. В 1872—1876 гг. опубликована серия работ С. Ли [4], в которой устанавливается глубокая внутренняя связь симметрия — законы сохранения , свойственная задачам аналитической механики [5. 6]. С. Ли показал, что первые интегралы движения гамильтоновых систем являются следствием существования группы контактных преобразований фазовых переменных.  [c.70]


Рассматривая законы количеств движения и кинетических моментов, мы видели, что при некоторых условиях имели место законы сохранения количеств движения или кинетических моментов, представлявшие собой с математической точки зрения первые интегралы уравнений движения, ибо в них не фигурировали производные второго порядка. Сформулируем теперь аналогичный закон сохранения для рассматриваемого закона изменения кинетической энергии если все силы, действующие на точки материальной системьс, потенциальны, то во все время движения системы сумма кинетической и потенциальной энергии,  [c.211]


Смотреть страницы где упоминается термин Первые интегралы. Законы сохранения : [c.341]    [c.71]    [c.100]    [c.61]    [c.309]    [c.97]    [c.224]    [c.236]    [c.240]   
Смотреть главы в:

Теоретическая механика  -> Первые интегралы. Законы сохранения



ПОИСК



ЗАКОНЫ СОХРАНЕНИЯ И ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ Первые интегралы уравнений движения и законы сохранения

Закон первый

Закон сохранения

Закон сохранения кинетического момента. Первые интегралы дифференциальных уравнений движения системы

Интегралы первые

Связь законов сохранения (первых интегралов) со свойствами пространства и времени. Теорема Эммы Нетер

Сохранение



© 2025 Mash-xxl.info Реклама на сайте