Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теоремы об изменении кинетической энергии точки и системы

Кинетическая энергия точки и системы и теоремы об изменении кинетической энергии точки и системы  [c.111]

После изложения основных понятий динамики материальной системы доказывается теорема об изменении кинетической энергии точки и рассматривается понятие работы сил, действующих на материальную точку.  [c.69]

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы f , удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом придет в движение и некоторы ее точки совершат действительные перемещения dr . Тогда силы FI совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет  [c.361]


Обращаем внимание на то, что для системы с одной степенью свободы составление дифференциального уравнения движения методом Лагранжа сводится по существу к тем же расчетам, что и при использовании теоремы об изменении кинетической энергии.  [c.381]

Эту задачу можно решить также и с помощью теоремы об изменении кинетической энергии системы материальных точек (см. решение задачи 349. Там же приведена сравнительная оценка обоих методов решения).  [c.212]

Теорема об изменении кинетической энергии системы материальных точек. Изменение кинетической энергии системы материальных точек при ее перемещении равно сумме работ всех внешних и внутренних сил системы на этом перемещении п п  [c.305]

Это — единственная из четырех общих теорем динамики, в формулировку которой входят не только внешние, но и внутренние силы. Наличие в формулировке теоремы внутренних сил несколько усложняет решение задачи. Если, однако, требуется определить внутреннюю силу, то решение задачи с помощью общих теорем динамики возможно только при применении теоремы об изменении кинетической энергии системы материальных точек.  [c.305]

В случае неизменяемой системы материальных точек, например, абсолютно твердого тела, сумма работ внутренних сил равна нулю и теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.305]

Вычисление потенциальной энергии системы материальных точек является одним из этапов решения задач при использовании теоремы об изменении кинетической энергии, уравнений Лагранжа второго рода и т. д.  [c.331]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]


Прямое применение теоремы об изменении кинетической энергии системы для случая удара невозможно, так как перемещением точек за время удара пренебрегаем и поэтому нельзя подсчитать работу по силам и перемещениям точек. Так как ударные силы представляются их импульсами, то, очевидно, нужно выразить работу сил через их импульсы. Получим это выражение.  [c.485]

В 200 т. I рассмотрена теорема об изменении кинетической энергии для свободной материальной точки. Эту теорему легко распространить и на систему материальных точек, если применить аксиому об освобождаемости от связей. Допустим, что рассматривается система, состоящая из п точек, массы которых обозначим Шг. Применяя теорему об изменении кинетической энергии к каждой точке системы отдельно, получим такую систему уравнений  [c.92]

Наконец, теорема об изменении кинетической энергии применяется при изучении движений системы в потенциальном силовом поле, а также тогда, когда в условии задачи в качестве известных или искомых величин находятся скорости точек системы, их перемещения и силы, приложенные к этим точкам.  [c.106]

Таким образом, теорема об изменении кинетической энергии выглядит точно так же, как и в случае инерциальной системы отсчета. Отличив заключается только в том, что элементарная работа внешних и внутренних сил системы вычисляется на перемещениях точек их приложения по отношению к центру масс.  [c.146]

Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ И МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.618]

Теорема об изменении кинетической энергии системы в дифференциальной и конечной формах дает решение задач, относящихся к динамике системы, только тогда, когда внутренние силы наперед известны. Если же внутренние силы не известны, то получить решение с помощью одной только этой теоремы нельзя.  [c.640]

Так как центр масс системы движется как точка, к которой приложены все внешние силы и в которой сосредоточена вся масса системы, то для него, как и для всякой материальной точки, имеет место теорема об изменении кинетической энергии (2), т. е.  [c.648]

Сказанное в 108 по отношению к отдельной материальной точке можно обобщить и на механическую систему материальных точек. Поэтому мы можем аналогичным образом сформулировать и доказать теорему о законе сохранения механической энергии для механической системы. Для вывода этой теоремы напомним, что теорема об изменении кинетической энергии механической системы записывается так (29, 107)  [c.667]

Теорема об изменении кинетической энергии системы материальных точек (в конечной форме). Изменение кинетической энергии системы равно сумме работ всех сил, действующих на систему (как внешних, включая реакции связей, так и внутренних) на данном перемещении системы.  [c.451]

С помощью теоремы об изменении кинетической энергии решается как прямая, так и обратная задачи динамики. В дифференциальной форме теорема применяется для. того, чтобы найти по заданным силам ускорения точек системы (или наоборот), т. е. чтобы составить дифференциальные уравнения движения системы и интегрированием этих ураннений найти законы изменения скоростей и перемещений точек системы. Интегральная форма теоремы используется в тех случаях, когда при конечном перемещении системы заданы три из следующих четырех величин скорости, перемещения, силы, массы, а четвертая подлежит определению. Теорема чаще всего применяется для исследования движения механических систем с одной степенью свободы, т. е. систем, положение которых определяется одной координатой (линейной или угловой). Поэтому в данной главе мы будем рассматривать только такие системы.  [c.226]


Подчеркнем, что, в отличие от двух рассмотренных выше основных теорем динамики, в теореме об изменении кинетической энергии речь идет о всех силах системы как внешних, так и внутренних. Тот факт, что силы, с которыми взаимодействуют две точки системы, равны по величине и противоположно направлены, не приводит к равенству нулю работы внутренних сил системы, так как при подсчете работы  [c.167]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Сумма работ внутренних сил абсолютно гибкой и нерастяжимой нити также равна нулю. В этих случаях теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.357]

Равенство (10.34) представляет математическую запись теоремы об изменении кинетической энергии материальной системы изменение кинетической энергии материальной системы при переходе ее из начального в текущее конечное) положение равно сумме работ на этом перемещении всех внешних и внутренних сил, приложенных к точкам системы.  [c.239]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

Основные положения статики вытекают из теоремы об изменении кинетической энергии системы. Такой прием позволяет, во-первых, исключить из курса ряд элементарных теорем статики, которые получаются в данном случае как следствия, и, во-вторых, получить условия равновесия сил, действующих на абсолютно твердое тело, именно в то время, когда они необходимы студентам для изучения сопротивления материалов. Этого нельзя добиться, если в основу статики положить принцип возможных перемещений, что потребовало бы предварительного рассмотрения таких понятий, как возможные перемещения, идеальные связи, а также свойств идеальных связей. Кроме того, энергетический подход к решению статических задач оправдывается тем, что кинетическая энергия является основополагающим понятием механики, о чем было сказано выше. С методологической точки зрения эту особенность трудно переоценить.  [c.71]

Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]

Теорема об изменении кинетической энергии системы. Закон сохранения полной механической энергии. Теорему об изменении кинетической энергии для одной материальной точки мы получили в 12. Напишем теперь уравнение (12.1) этой теоремы для каждой точки системы подробней, выделив в правой части уравнения сумму работ заданных сил и сил реакции  [c.138]

Теорема об изменении кинетической энергии материальной гочки. Пусть точка М совершает переносное движение вместе с подвижной сисгемой координат Оху OTHO Hrejn,HO основной системы координаг 0 x y z и относительное движение но отношению к системе координат Oxyz (рис. 71). Абсолютным движением точки М является ее сложное движение  [c.341]


Значение s можно было бы опять определить с помощью теоремы об изменении кинетической энергии, но в данном случае проще составить дифференциальное уравнение относительного движения груза [уравнение (56) из 91] в проекции ма ось /Is. Так как подвижн система отсчета вместе с призмой перемещается поступательно, то кор=0, а Рпер——ща , где —ускорение призмы (aj= U ). Тогда fn ps=—т х os а, и в проекции на ось /4s получим  [c.316]

В данной главе рассмотрены различные случаи вычисления работы сил и устаиовлеиа теорема об изменении кинетической энергии как материальной точки, так и механической системы.  [c.157]

Вывод теоремы об изменении кинетической энергии для точки в относительном движении произведем так же, как и вывод аналогичной теоремы в абсолютном движении, умножив обе части (72) скалярыо ь-а вектор элементарного относительного перемещегшя йг и преобразуем левую часть полученного выражения. Значок над дифференциалом радиуса-вектора г и других векторов указывает, что при дифференцировании надо брать изменение соответствующего вектора относительно подвижной системы координат Охуг. Таким образом,  [c.302]

Если относительным движением системы является движение относительно ее центра инерции, то теорема об изменении кинетической энергии непосредственно вытекает из теоремы Кенига. Действительно, на основании равенств (1.104) и (1.110Ь) найдем  [c.95]

Теорема об изменении кинетической энергии устанавливает связь между изменением основной меры движения системы ма-тер альных точек — кинетической энергии — и мерой действия сил на протяжении путей движения точек системы — работой сил для широкого класса сил, носящих наименование консервативных, работа может быть выражена как изменение потенциальной энергии. Таким образом, в круг вопросов механики вводится понятие энергии. Значение этого понятия состоит в том, что им определяется единая физическая величина, проявляющаяся в различных физических явлениях и, таким образом, связывающая их между собой. Понятие энергии объединяет механику с термодинамикой, с учением об электрических явлениях и т. и. Преобразование механической энергии в другие формы энергии и обратное преобразование этих форм в механи-чесь ую энергию представляет важную задачу современной тех ики.  [c.105]

Если все (внутренние и внешние) силы, под действием которых происходит движение системы, являются потенциальными, то. согласно равенствам (54) и (69), теорема об изменении кинетической энергии может быть заиисана в виде  [c.232]

Теорема об изменении кинетической энергии системы в дифференциальной форме. сли связи, удовлетворяющие условиям а), б) и в) п. 1.1. гл. XVIII, к тому oi e и стационарны, то дифференциал кинетической энергии системы равен сумме элементарных рлбот всех заданных активных сил (как впешнпх,  [c.348]

В заключение определим угловую скорость цилиндра с помощью теоремы об изменении кинетической энергии системы тел. Учитьгаая, что вначале система находилась в покое, что работа силы тяжести цилиндра равна нулю (точка ее приложения не перемещается), и пренебрегая трением, будем иметь  [c.166]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Указания. Задача Д4—па применение теоремы об изменении кинетической энергии системы. Прн решении задачи учесть, что кинетическая энергия Т системы равна сумме кинетических энергий всех входящих в систему тел эту энергию нужно выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении Т для установления зависимости между скоростями точек тела, движущегося плоскопараллельно, или между его угловой скоростью и скоростью центра масс воспользоваться мгновенным центром скоростей (кинематика). При вычислении работы надо все перемещения выразить через заданное персмсщенне ь учтя, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями.  [c.62]

В первой работе получено дифференциальное уравнение малых колебаний математического маятника. Повый общий принцип, излагаемый в работах 1748-1749 гг., состоит в том, что из всех положений, которые последовательно занимает система тел, связанных между собой нитями, рычагами или любыми другими средствами и двигающихся под действием некоторых сил, положение, в котором система имеет наибольшую сумму произведений масс на квадраты скоростей, то есть наибольшую живую силу, является именно тем положением, в которое необходимо в первую очередь поместить систему, чтобы она оставалась в покое [182]. Пз определения принципа с достаточной ясностью следует его аналогичность принципу возможных перемещений, сформулированному ранее П. Бернулли. Однако эта аналогичность может быть установлена только с помощью теоремы об изменении кинетической энергии, тогда уже известной отдельным ученым, но еще не вошедшей в общепринятый арсенал теоретической механики. Поэтому принцип Куртиврона можно считать новым. Строгое доказательство своего принципа Куртиврон не приводит, ограничившись его демонстрацией на конкретных примерах.  [c.249]



Смотреть страницы где упоминается термин Теоремы об изменении кинетической энергии точки и системы : [c.526]    [c.300]   
Смотреть главы в:

Курс теоретической механики 1973  -> Теоремы об изменении кинетической энергии точки и системы



ПОИСК



Кинетическая системы

Кинетическая энергия системы

Кинетическая энергия точки

Кинетическая энергия точки и системы точек

Кинетическая энергия—см. Энергия

Система точек

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии системы

Теорема об изменении кинетического

Теорема об изменении кинетической точки

Теорема об изменении кинетической энергии

Теорема об изменении кинетической энергии системы

Теорема об изменении кинетической энергии системы материальных точек

Теорема об изменении кинетической энергии системы материальных точек (в дифференциальной форме)

Теорема об изменении кинетической энергии точки

Теорема об изменении энергии

Теорема системы

Теоремы об изменении кинетической энергии материальной точки и механической системы

Уравнения движения точки в неинерциальной системе координат. Теорема об изменении кинетической энергии Закон сохранения энергии

Энергия Теорема

Энергия изменения

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая системы точек

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте