Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема об изменении кинетической точки

Теорема об изменении кинетической энергии материальной точки  [c.221]

По теореме об изменении кинетической энергии точки,  [c.548]

Решение задач. Теорема об изменении кинетической энергии [формула (52)1 позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44 ), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. 88).  [c.215]


Решение. На груз при его движении действуют сила тяжести Р и сила сопротивления воздуха R. По теореме об изменении кинетической энергии, считая груз материальной точкой, имеем  [c.215]

Решение. На поршень действуют сила Q и сила давления газа Р. Так кан у. поршня Vq=0 и У —о, то по теореме об изменении кинетической энергии  [c.218]

Уравнения (54) служат для определения реакции связи N. Из уравнений видно, что при криволинейном движении динамическая реакция в отличие от статической кроме действующих активных сил и вида связи зависит еще от скорости. Эту скорость (если она не задана) можно найти или проинтегрировав уравнение (53), или же, что обычно проще, с помощью теоремы об изменении кинетической энергии точки в уравнение (52 ), выражающее эту теорему для случая связей без трения, реакция N тоже не входит.  [c.220]

Величину ти наймем из теоремы об изменении кинетической энергии, Тан как Vq=0, то уравнение (52 ) дает  [c.222]

Задачи, рассмотренные в предыдущих параграфах (и в 89), удалось решить с помощью теоремы об изменении кинетической энергии по той причине, что во всех случаях работу действующих сил можно было подсчитать, не зная заранее закона происходящего движения. Важно установить, каков вообще класс сил, обладающих этим свойством.  [c.317]

Таким образом, мы получили для Т то же выражение, что и в задаче 107. Определяя теперь, как и в задаче 107, величину Oj с помощью теоремы об изменении кинетической энергии, найдем искомый результат.  [c.349]

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы f , удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом придет в движение и некоторы ее точки совершат действительные перемещения dr . Тогда силы FI совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет  [c.361]

Обращаем внимание на то, что для системы с одной степенью свободы составление дифференциального уравнения движения методом Лагранжа сводится по существу к тем же расчетам, что и при использовании теоремы об изменении кинетической энергии.  [c.381]

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.168]

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ В ОТНОСИТЕЛЬНОМ ДВИЖЕНИИ  [c.169]

ПРИМЕРЫ ПРИМЕНЕНИЯ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.170]

Для определения максимального сжатия h пружины воспользуемся на участке DE теоремой об изменении кинетической энергии материальной точки  [c.165]


Во-первых, имеет место закон сохранения кинетического момента. Действительно, если принять за полюс центр притяжения (выбранный в качестве начала координат инерциальной системы отсчета), то момент центральной силы относительно этого полюса всегда равен нулю, так как центральная сила проходит через полюс. Но если момент силы равен нулю, то в силу теоремы об изменении кинетического момента производная от кине-  [c.82]

Обратим внимание на то, что эти уравнения можно трактовать просто как запись теоремы об изменении кинетического момента в проекциях на оси т], Действительно, вспомним теорему об изменении кинетического момента  [c.193]

К уравнению (3) можно непосредственно прийти с помощью теоремы об изменении кинетической энергии материальной точки см. ниже, главу IX, 6.)  [c.39]

Эту задачу можно решить также и с помощью теоремы об изменении кинетической энергии системы материальных точек (см. решение задачи 349. Там же приведена сравнительная оценка обоих методов решения).  [c.212]

Теорема об изменении кинетической энергии системы материальных точек  [c.272]

Вычисление суммы работ сил, приложенных к материальной точке либо к системе материальных точек, является одним из этапов решения задач, в которых применяется теорема об изменении кинетической энергии, либо составляются уравнения Лагранжа второго рода (см. ниже, главу X, 6).  [c.276]

Вычисление кинетической энергии системы материальных точек является одним из этапов решения задач при использовании теоремы об изменении кинетической энергии системы материальных точек, либо при составлении уравнений Лагранжа второго рода (см. ниже, главу X, 6), либо при вычислении потери кинетической энергии при ударе (см. ниже, главу XII, 1).  [c.285]

Теорема об изменении кинетической энергии материальной точки. Изменение кинетической энергии материальной точки при ее перемещении равно сумме работ, совершенных силами, приложенными к точке, на этом перемещении  [c.300]

Решение задач с помощью теоремы об изменении кинетической энергии материальной точки рекомендуется проводить в следующей последовательности  [c.300]

Теорема об изменении кинетической энергии системы материальных точек. Изменение кинетической энергии системы материальных точек при ее перемещении равно сумме работ всех внешних и внутренних сил системы на этом перемещении п п  [c.305]

Это — единственная из четырех общих теорем динамики, в формулировку которой входят не только внешние, но и внутренние силы. Наличие в формулировке теоремы внутренних сил несколько усложняет решение задачи. Если, однако, требуется определить внутреннюю силу, то решение задачи с помощью общих теорем динамики возможно только при применении теоремы об изменении кинетической энергии системы материальных точек.  [c.305]

В случае неизменяемой системы материальных точек, например, абсолютно твердого тела, сумма работ внутренних сил равна нулю и теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.305]

Задача 349. Решить задачу 298 с помощью теоремы об изменении кинетической энергии системы материальных точек.  [c.309]

Следует отметить, что задача оказалась столь просто решенной с помощью теоремы об изменении кинетической энергии потому, что требовалось получить зависимость между угловой скоростью (равной в момент остановки нулю) и углом поворота кольца.. Если бы по условию задачи требовалось определить ш — f t) либо 9 = ф (0> то пришлось бы решить дифференциальное, уравнение.  [c.310]

Задачу решаем с помощью теоремы об изменении кинетической энергии неизменяемой, системы материальных точек (веревка при движении системы натягивается)  [c.321]

Вычисление потенциальной энергии системы материальных точек является одним из этапов решения задач при использовании теоремы об изменении кинетической энергии, уравнений Лагранжа второго рода и т. д.  [c.331]


Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Теорема об изменении кинетического момента справедлива и для случая относительного движения точек системы по отношению к поступательно движущимся осям с началом в центре масс (центре инерции) системы, т. е.  [c.346]

Теорема об изменении кинетической энергии точки. Ска-  [c.331]

Эти частттьте случаи показывают, что для подвижных точек центра масс для любой системы и мгновенного центра скоростей при плоском движении твердого тела в рассмотренном случае теорема об изменении кинетического момента для абсолютного движения имеет ту же форму, что и для неподвижной точки О.  [c.200]

Теорема об изменении кинетической энергии материальной гочки. Пусть точка М совершает переносное движение вместе с подвижной сисгемой координат Оху OTHO Hrejn,HO основной системы координаг 0 x y z и относительное движение но отношению к системе координат Oxyz (рис. 71). Абсолютным движением точки М является ее сложное движение  [c.341]

Для определения I воспользуемся теоремой об изменении кинетической энергии. Так как Tos О, а значение Т для катящегося цилиндра было найдено в задаче 136 (см, 121) и равно Smv i , то  [c.315]

Значение s можно было бы опять определить с помощью теоремы об изменении кинетической энергии, но в данном случае проще составить дифференциальное уравнение относительного движения груза [уравнение (56) из 91] в проекции ма ось /Is. Так как подвижн система отсчета вместе с призмой перемещается поступательно, то кор=0, а Рпер——ща , где —ускорение призмы (aj= U ). Тогда fn ps=—т х os а, и в проекции на ось /4s получим  [c.316]

В данной главе рассмотрены различные случаи вычисления работы сил и устаиовлеиа теорема об изменении кинетической энергии как материальной точки, так и механической системы.  [c.157]

Для определения скорос1и точки В стержня в этот момент воспользуемся теоремой об изменении кинетической энергии системы в форме уравнения (69.2)  [c.188]


Смотреть страницы где упоминается термин Теорема об изменении кинетической точки : [c.226]    [c.142]    [c.300]    [c.526]   
Курс теоретической механики Часть2 Изд3 (1966) -- [ c.87 , c.88 ]



ПОИСК



Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости. Теорема об изменении кинетической энергии при относительном движении

Кинетическая энергия Теорема об изменении кинетической энергии ма териальной точки

Примеры применения теоремы об изменении кинетической энергии материальной точки

Теорема об изменении кинетического

Теорема об изменении кинетического момента системы материальных точек

Теорема об изменении кинетического момента точки

Теорема об изменении кинетической энергии в случае движения несвободной материальной точки

Теорема об изменении кинетической энергии для несвободной материальной точки

Теорема об изменении кинетической энергии материальной точки

Теорема об изменении кинетической энергии материальной точки в интегральной форме

Теорема об изменении кинетической энергии материальной точки в относительном движении

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении

Теорема об изменении кинетической энергии при движении несвободной материальной точки. Закон сохранения энергии. Движение по инерции

Теорема об изменении кинетической энергии системы материальных точек

Теорема об изменении кинетической энергии системы материальных точек (в дифференциальной форме)

Теорема об изменении кинетической энергии точки

Теорема об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы

Теоремы об изменении кинетического момента материальной точки и механической системы

Теоремы об изменении кинетической энергии материальной точки и механической системы

Теоремы об изменении кинетической энергии точки и системы

Уравнения движения точки в неинерциальной системе координат. Теорема об изменении кинетической энергии Закон сохранения энергии



© 2025 Mash-xxl.info Реклама на сайте