Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение ЭВМ к решению задач статики

III. ПРИМЕНЕНИЕ ЭВМ К РЕШЕНИЮ ЗАДАЧ СТАТИКИ  [c.50]

Как отмечалось выше (см. 1.6), при решении задач статики задаются нагрузками, а по ним определяют реакции опор. Сами задачи решаются с применением алгебраических методов с помощью систем уравнений, которые получают из условий равновесия.  [c.43]

Применение метода веревочного многоугольника к плоской системе сил. Сложение сил, расположенных в одной плоскости, при помощи метода веревочного многоугольника, является столь же общим методом решения задач статики на плоскости, как и аналитический, рассмотренный ранее.  [c.126]


Примеры применения условий равновесия свободного твердого тела. Методика решения задач статики  [c.294]

Рассмотрим в этом параграфе некоторые примеры применения условий равновесия свободного и несвободного твердого тела. Одновременно мы вновь остановимся на методике решения задач статики, кратко рассмотренной в 146.  [c.294]

Следует помнить, что равновесие, о котором идет речь в формулировке принципа Даламбера, условное. Силы инерции не приложены к материальной точке, на которую действуют силы Р и Я. Поэтому это равновесие следует рассматривать как фиктивное. Этим и объясняется, почему при формулировке принципа Даламбера слово уравновешивается взято в кавычки. Само понятие о таком равновесии есть лишь способ для введения особой методики решения задач динамики, заключающейся в применении в динамических задачах уравнений равновесия статики. Собственно в этом и заключается практическое значение принципа Даламбера. Принцип Даламбера дает возможность формально сводить решение задач динамики к решению задач статики.  [c.421]

В статике твердого тела (отдел первый) были выведены уравнения равновесия твердого тела, заключающиеся в равенстве нулю сумм проекций приложенных к телу сил на оси координат и сумм моментов этих сил относительно тех же осей.. При решении задач статики реакции связей не выделялись из общего числа приложенных к телу сил, что соответствовало применению принципа освобождаемости.  [c.319]

Принцип возможных перемещений дает единый метод решения задач статики для любой механической системы и для любой совокупности сил, действующих на эту систему. При этом применение принципа требует учета одних только активных сил и позволяет исключить из рассмотрения все наперед неизвестные реакции связей.  [c.768]

Рассмотрим применение кольцевого элемента для решения задач устойчивости оболочки вращения при осесимметричном нагружении. Будем считать, что начальное напряженное состояние оболочки определяется решением задачи статики в линейной постановке, а перемещения в начальном состоянии тождественны нулю. Такие предположения соответствуют модели напряженного, но недеформиро-ванного тела в докритическом состоянии. Нагрузки будем считать мертвыми , т. е. не изменяющимися при переходе системы в смежное состояние. В этом случае решение задачи устойчивости можно получить из вариационного условия (3.29), соответствующего для упругих систем вариационному критерию в форме Брайана. Выделим из оболочки отдельный кольцевой элемент. С учетом работы сил реакций отброшенных частей на дополнительных перемещениях первого порядка малости запишем условие смежного равновесного состояния  [c.145]


В первой главе рассмотрены вопросы теории метода, построения основных расчетных соотношений, дано описание внешней нагрузки, введены понятия о граничных параметрах. Во второй главе показано применение предлагаемого алгоритма для решения задач статики  [c.8]

В данном разделе рассматриваются вопросы теории метода граничных элементов (МГЭ) и его практического применения для решения задач статики, динамики и устойчивости стержневых систем. Основное внимание уделено изложению алгоритма метода, математическим моделям расчетных схем и реализации соотношений на персональных компьютерах.  [c.10]

Приведенные примеры характерны использованием гиперболических функций для описания перемещений и усилий в упругих системах. Как видно, МГЭ позволяет получать точные решения задач статики при минимально возможной дискретизации расчетной схемы. Отметим, что, если фундаментальные функции отличны от полиномов, то МКЭ не дает точных решений задач [184]. Повышение точности расчетов по МКЭ достигается либо дроблением сетки КЭ (этот путь приводит к увеличению порядка разрешаюш,ей системы уравнений), либо применением точных матриц жесткости, что не всегда возможно.  [c.69]

Применение МКЭ к разработке алгоритмов решения задач статики и динамики машиностроительных конструкций позволяет в полной мере использовать его преимущества при программной  [c.133]

Применение дискретно-континуальной расчетной схемы для тонкостенных оболочечных конструкций определяет основной метод решения задач статики и динамики тонкостенных осесимметричных и призматических конструкций. При численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений применяют метод ортогональной прогонки Годунова [6].  [c.143]

При решении задачи статики многослойных панелей общего вида методом конечных элементов (МКЭ) на основе вариационных формулировок смешанного типа (4.41), (4.42) требования к выбору функций формы остаются такими же, как и в методе перемещений. В качестве функций формы конечного элемента наиболее часто используются алгебраические полиномы, порядок которых должен обеспечивать требуемую гладкость функций и их производных. В МКЭ важным требованием к функциям формы является требование воспроизводить в элементе однородное напряженно-деформированное состояние и, в частности, описывать смещение элемента как жесткого целого. Наиболее распространенный способ удовлетворения указанным требованиям состоит в повышении порядка аппроксимирующих полиномов. При этом используются полиномы более высокого порядка, чем это требуется, исходя из структуры вариационных уравнений, что приводит к увеличению обобщенных степеней свободы конечного элемента. Применение смешанных вариационных формулировок позволяет с помощью независимой аппроксимации деформаций и перемещений улучшить свойства конечных элементов.  [c.190]

В этой главе мы рассмотрим графические методы решения задач статики в том случае, когда все приложенные к телу силы лежат в одной плоскости. Вообще графические методы имеют очень широкое применение в технической практике. Хотя эти методы и менее точны по сравнению с аналитическими, так как точность результата здесь зависит от точности выполнения чертежа, однако  [c.137]

Рассмотрим теперь примеры применения принципа возможных перемещений к решению задач статики.  [c.468]

Принцип виртуальных перемещений является мощным аналитическим средством решения задач статики. Интересные примеры можно найти в книге [6]. Принцип также нашел применение в механике сплошной среды для построения моделей [17].  [c.40]

Изложены результаты разработки алгоритмов и программ, реализующих один из возможных видов организации общения с ЭВМ при обучении студентов решению задач статики. Применение ЭВМ обеспечивает как генерацию и выдачу практически неограниченного числа исходных вариантов, позволяющих студенту самостоятельно составить расчетную схему конкретной задачи статики, так и проверку правильности составленных студентом уравнений равновесия, отраженной в соответствующих словесных комментариях, выдаваемых ЭВМ.  [c.125]


В настоящем параграфе мы познакомимся с весьма оригинальным и плодотворным методом — именно с применением кинематических методов к решению задач статики сооружений,  [c.363]

В теории механизмов и машин весьма широкое применение получил так называемый кинетостатический метод силового расчета механизмов. Этот метод, как известно из курса теоретической механики, состоит в следующем. Если к точкам несвободной системы вместе с задаваемыми силами приложить мысленно фиктивные для этой системы силы инерции, то совокупность этих сил уравновешивается реакциями связей. Этот прием, несмотря на свою условность, обладает тем важным для практики преимуществом, что позволяет свести решение задач динамики к решению задач статики. Это имеет место, когда поставленная задача относится к типу первой задачи динамики, т. е. задачи об определении сил по заданному движению.  [c.142]

Покажем теперь применение начала виртуальных перемещений к решению задач статики. В приложениях обыкновенно приходится иметь дело с системами, подчиненными лишь двусторонним связям. В таких случаях вопрос решается при помощи уравнения работ, выведенного в 62.  [c.179]

Способ Бубнова — Галеркина. Способ, разработанный Н. Г. Бубновым и Б. Г. Галеркиным, получил широкое распространение для приближенного решения различных задач статики н динамики упругих тел. Для большей наглядности рассмотрим применение этого способа на примере решения задачи о поперечных колебаниях стержня переменного сечения, описываемых дифференциальным уравнением  [c.586]

Методы решения задач о равновесии с применением теории скользящих векторов составляют раздел механики, называемый геометрической статикой.  [c.353]

Применение общего уравнения статики к решению задач о равновесии системы твердых тел  [c.116]

В предыдущем параграфе было показано, что основные условия равновесия как свободного, так и несвободного твердого тела вытекают из общего уравнения статики (11.2). Уже из этого видно, что общее уравнение статики можно непосредственно применять к решению конкретных задач о равновесии систем абсолютно твердых тел. Далее можно заметить, что в ряде случаев непосредственное применение общего уравнения статики  [c.116]

Отсутствие аналитических решений для нелинейных задач статики и динамики конструкций АЭУ, описываемых уравнениями (3.40)-(3.50), обусловили широкое использование численных методов, ориентированных на применение современных ЭВМ, и главным образом метода конечных элементов (МКЭ). Многочисленные задачи, возникающие в процессе проектирования АЭС, начиная от физики реакторов, гидродинамики и теплообмена и до разнообразных задач динамики конструкций, исследования их прочности и разрушения с учетом взаимодействия с физическими полями различной природы, решаются в настоящее время этим методом [45]. Однако наибольшее применение МКЭ получил в уточненных расчетах напряженных состояний, возникающих в элементах конструкции АЭУ при эксплуатационных, аварийных и сейсмических воздействиях.  [c.104]

Анализ результатов выполнения студентами расчетно-графических работ позволил сделать следующие выводы целесообразно подготовить и издать методические указания по применению ЭВМ для решения задач статики число обращений студента к ЭВМ зависит от способности студента и колеблется в пределах от одного до трех, но в любом случае словесные комментарии с ЭВМ направляют его самостоятельную работу и закрепляют знания улучшается усвоение теоретического материала и вырабатываются практические навыки самостоятельного решения задач выполнение конкретных правил применения ЭВМ формирует у студентов необходимые в последующей инженерной практике навыки строгого соблюдения требований ввода исходных данных в ЭВМ и интерпретации результатов уменьшаются трудозатраты преподавателей на этапах выдачи исходнЁхх вариантов, контроля за ходом решения, анализа промежуточных и конечных результатов расчета.  [c.51]

Метод виртуального варьирования возник вместе с принципом возможных перемещений (принципом виртуальных скоростей Лагранжа (J. L. Lagrang)) и принципом Даламбера (J. d Alembert) при объединении их в единый принцип Даламбера-Лагранжа, дающий общее уравнение аналитической механики. С использованием понятия возможных перемещений задаются реакции связей, в частности с помощью известного критерия идеальности связей. Принцип возможных перемещений вначале применялся при решении задач статики как необходимое условие равновесия. Достаточность принципа виртуальных скоростей для равновесия могла быть доказана только в теории, описывающей движение, так как под виртуальной скоростью следует понимать скорость, которую тело, находящееся в равновесии, готово принять в тот момент, когда равновесие нарушено, т. е. ту скорость, какую тело фактически получило бы в первое мгновение своего движения... [51]. Здесь мы вместо термина возможное перемещение предпочитаем пользоваться термином виртуальное перемещение , чтобы избежать терминологического противоречия, указанного М. В. Остроградским [79] при нестационарных связях виртуальные перемещения в общем случае не являются возможными в смысле физической реализации (иначе получилось бы, что возможные перемещения не являются возможными). Термин виртуальные вариации применяем, следуя авторам работ [74, 101], чтобы подчеркнуть, что варьирование производится в соответствии с требованиями, налагаемыми на виртуальные перемещения. Совокупность способов получения виртуальных вариаций, правила выбора множества последних и условия их применения составляют метод виртуального варьирования.  [c.10]


В первой главе рассмотрены вопросы теории метода, построения основных расчетных соотношений, дано описание внешней нагрузки, введены по11ятия о граничных параметрах. Во второй главе показано применение предлагаемого алгоритма для решения задач статики стержневых систем, учета продольных перемещений и деформации сдвига. В третьей и четвертой главах описаны задачи динамики и устойчивости стержневых систем. Пятая глава посвящена выводам и анализу практического применения нового метода. В шестой главе рассмотрены отдельные задачи теории тонких пластин, которые могут быть решены предлагаемым методом.  [c.4]

Приступая к решению задач механики, необходимо прежде всего рассмотреть методы описания движений. Раздел механики, в котором рассматриваются только методы описания движений, но не ставятся вопросы о законах движения, называется кинематикой. Законы дви-же1шя и их применение к отдельным конкретным задачам изучает динамика. Динамика в виде частного случая включает в себя статику, изучающую условия, при которых тела остаются в покое. В зависимости от свойств тел, движение которых изучается, характера изучаемых движений и содержания вопросов, на которые должен быть получен ответ, механика делится на механику точки, механику твердых (недеформируемых) тел и механику упругих тел (последняя включает в себя механику жидкостей и газов).  [c.12]

Энергетические методы широко применяют в задачах статики и динамики тонкостенных конструкций. Наиболее распространенным из них является метод Релея — Ритца, предусматривающий представление решения в виде ряда по координатным функциям. Выбор метода решения задачи — интегрирование дифференциального уравнения (классическими методам и или методом Галер-кина) или применение энергетического метода — часто связан с определенными трудностями. Можно показать, что при условии корректного применения метода Галеркина к системе дифференциальных уравнений [22], он в математическом отношении эквивалентен методу Релея — Ритца [133]. Однако, если имеется только дифференциальное уравнение, то следует применять метод Галеркина или другие методы его решения, а если имеется только выражение, определяющее энергию системы, следует отдать предпочтение энергетическим методам. Эти соображения не помогают выбрать метод решения задач, которые сформулированы как в дифференциальной, так и в энергетической постановке. Он определяется в этих случаях предшествующими расчетами, а также наличием программ решения задач на собственные значения (для устойчивости и колебаний) для вычислительных машин. Традиционно энергетические методы получили наибольшее распространение в США и Германии, в Англии отдавалось предпочтение конечно-разностным методам решения дифференциальных уравнений, а в СССР — методу Галеркина.  [c.179]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

В данной книге нашли отражение вопросы теории и практического применения аналитического варианта МГЭ применительно к одномерным плоским и пространственным расчетным схемам линейных систем стержней и пластин. Для расчета подобных систем предложен вариант МГЭ, основанный на новой схеме преобразования интегральных соотношений метода начальных параметров в систему линейных алгебраических уравнений. Отличительной особенностью метода является единообразный подход к алгоритму задач статики, дднамики и устойчивости, что создает широкие возможности для машинной реализации алгоритма. Показано, что решения этих трех типов задач отличаются только лишь фундаментальными функциями, а матричная форма разрешаюш,их уравнений позволяет совместить разные задачи. Несмотря на уклон в задачи строительной механики и теории тонких пластин, разработанный аналитический вариант МГЭ с небольшими изменениями может быть приспособлен для решения задач электротехники, теплотехники, физики, гидрогазодинамики, аэроупругости и других наук, где соответствуюш,ие процессы можно описать дифференциальными уравнениями.  [c.8]



Смотреть страницы где упоминается термин Применение ЭВМ к решению задач статики : [c.248]    [c.301]    [c.164]    [c.109]    [c.349]    [c.173]    [c.58]    [c.294]    [c.424]    [c.108]    [c.197]   
Смотреть главы в:

Сборник заданий для курсовых работ по теоретической механике  -> Применение ЭВМ к решению задач статики



ПОИСК



Задачи статики

Примеры применения условий равновесия свободного твердого тела. Методика решения задач статики

Решение задач статики

Статика



© 2025 Mash-xxl.info Реклама на сайте