Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал текучий

Сдерживаемая снизу система с верхней подачей материала. Текучее подается снизу под решетку. Материал подается сверху и отводится снизу (нисходящий псевдоожиженный слой).  [c.137]

Многие из течений, встречающихся в практических приложениях, относятся к типу, который мы назвали течениями растяжения. Говоря в широком смысле, это такие течения, в которых неоднородность поля скорости развивается преимущественно в направлении самой скорости, а не в направлении, ортогональном к ней, как это имеет место в сдвиговых течениях. Примеры таких течений встречаются в процессах прядения волокна или образования пленки, где текучий материал, т. е. расплав или раствор, вытягивается из отверстия фильеры. В головке экструдера, где развивается сходящееся поле течения в направлении выпускного отверстия, течение в основном по своему характеру также может быть течением растяжения, хотя должны появляться и некоторые сдвиговые деформации.  [c.288]


Существенную роль в описании свойств аморфных полимеров играет диаграмма деформационно-прочностных состояний (рис. 4.93). Как уже отмечалось, в зависимости от температуры аморфный материал находится в одном из трех физических состояний стеклообразном (на рис. 4.93—область упругих деформаций), высокоэластическом (на рис. 4.93 — область высокоэластических деформаций) и вязко-текучем (на рис. 4.93 — область необратимых деформаций). На рис. 4.93 изображены предельные напряжения, т. е. напряжения, при которых материал разрушается — по-разному в разных температурных областях. Все температурные границы смещаются к высоким температурам с увеличением скорости деформации (в особенности при ударе) и уменьшением продолжительности действия нагрузки. Проследим за поведением материала в каждой из температурных областей, рассматривая соответствующие диаграммы напряжений  [c.341]

На рис. 6 представлена общая температурная зависимость условно определенного модуля упругости полимеров, известного по результатам многих испытаний. С повышением температуры модуль упругости падает, материал переходит из стеклообразного состояния в высокоэластическое, причем линейный полимер теряет свою упругость и переходит в вязко-текучее состояние.  [c.15]

Схемы сушильных установок чрезвычайно разнообразны. Каждая из них должна удовлетворять совершенно определенным требованиям производства и соответствовать виду обрабатываемого сырья. На рис. 4-1 представлены некоторые из основных схем, используемых для сушки материалов и формованных изделий. На рис. 4-1,а показана схема распылительной сушилки для удаления влаги из текучих материалов, суспензий и получения сухого остатка в виде порошка. Сушильным. агентом является горячий воздух или продукты сгорания. Распыливание сырьевого материала в таких установках производится с помощью вращающегося диска, форсунок и т. п. Продукт находится в непосредственном контакте с газовым теплоносителем, который может быть загрязнен (золой, сажей). На рис. 4-1,6 показана схема контактной сушилки, в которой материал, обла-122  [c.122]

Сегрегация по плотности. Давление внутри псевдоожиженного слоя приблизительно пропорционально полному объемному весу столба материала и текучего над рассматриваемым уровнем. Следовательно, на погруженное в слой тело (в идеальном случае, если тело не нарушает псевдоожижения) действует подъемная сила, равная весу вытесненного телом объема слоя, т. е. 7 с. с. Забродский. 97  [c.97]


Сдерживаемая снизу система без подачи материала. Здесь Ym>Y текучее подается в нижнюю часть трубы под решетку, над которой находится навеска материала (псевдоожиженная система периодического действия).  [c.137]

Кроме того, на характер деформации влияет время нагружения материала, определяющее возможность релаксационных явлений, зависящих, в свою очередь, от строения углеродных цепей (разветвление — привитые полимеры, количество боковых замещающих групп и т. д.), а также от коэффициента полимеризации п. При увеличении коэффициента полимеризации повышается температура перехода полимера из состояния стекловидного в состояние упруго-эластическое и вязко-текучее. Последний переход может потребовать высоких температур, при которых уже начинается распад связей или деструкция полимера. Такие полимеры называются термореактивными в отличие от термопластичных, которые могут совершать многократно этот переход без следов разложения. Они более перспективны и удобны в процессах переработки, так как не создают необратимых потерь за счет брака (экономически целесообразны).  [c.14]

Прессованный асбест лучше применять при высоких усилиях затяжки болтового соединения, в этом случае происходит достаточное уплотнение структуры, что делает материал непроницаемым. По сравнению с более текучими прокладочными материалами прессованный асбест требует значительных усилий сжатия, необходимых для заполнения всех микронеровностей фланцевых уплотнительных поверхностей, применяется он в сравнительно тяжелых массивных конструкциях с жесткими фланцами и мощными болтами.  [c.232]

Поток текучей среды, средства воздействия на него F 15 D 1/00 Потолочные осветительные устройства F 21 <8 1/02-1/10, 13/(02-10) V 36/02 опоры и крепления V 21/(02-41)> Правка [В 24 В (абразивных колес на станках 53/(075, 085) шлифующих поверхностей 53/(12-14)) зубьев пил В 23 D 63/(00-20) В 21 (кузовов транспортных средств D 1/12 листового металла D 1/00-14 проволоки в волочильных или намоточных машинах С 19/00 профильного металла, прутков, труб и т. п. D 3/00-3/16 рам транспортных средств D 1/14 цепей или их звеньев L 15/(00-02)) В 29 С (листового 53/18 труб из 53/20) пластического материала] Предкамерные (форкамерные) ДВС F 02 В 19/(00-18)  [c.147]

Тральщики и их оборудование В 63 С 7/00-7/08 Трамблеры F 02 Р 7/00-7/04 Трамбование материалов при производстве фасонных изделий из керамических масс В 28 В 1/04 Трамваи (В 61 D 13/00-13/02 электрооборудование В 60 L) Трансбордеры для ж.-д. В 61 J 1/10 Трансдукторы, использование для управления транспортными средствами В 60 L 15/18, 15/28 Трансмиссии [см. также передачи F 16 летательных аппаратов В 64 D 35/00-35/08 локомотивов В 61 С 9/00-9/52 самоходных саней, велосипедов, мотоциклов и т. п. В 62 М 9/00-25/08 транспортных средств В 60 К 17/(00-36), 20/(00-16), 23/(00-08), В 62 D 11/(14-18)] Транспортеры <см. также конвейеры, транспортирующие устройства изготовление резиновых лент для них В 29 D 29/06 в теплообменных аппаратах F 28 F 5/06 в установках и устройствах для сушки сыпучего, текучего или пластичного материала F 26 В 17/(18-22, 26) в холодильных установках F 25 D 13/06, 25/04> Транспортирование [деталей в цехах (В 65 G 7/00-9/00 ящики для этой цели В 25 Н 3/06) жидкостей (по трубопроводам F 17 D 1/08-1/18 в установках для переливания из складских резервуаров в перевозочные средства В 67 D 5/02-5/04) изделий (между станками В 23 Q 41/02 от режущих или перфорационных машин В 65 F1 35/(00-10)) В 65 мусора между транспортными средствами и контейнерами F 9/00 паковок при размотке нитевидных материалов Н 49/(00-38) на складских площадях, сортировочных ж.-д. станциях, портах или открытых разрезах рудных месторождений G 63/(00-06) тонких изделий от машин F1 29/(00-48) по трубам и желобам G 51/(00-46), 53/(00-66)) подвижного ж.-д. состава по путям, катки и т. п. для этой цели В 61 J 1/12]  [c.192]

Как показано в гл. 4, произвольное трехосное напряженное состояние в точке полностью описывается заданием трех главных компонент напряжения и их направлений. При испытании в условиях одноосного напряженного состояния единственной ненулевой нормальной компонентой напряжения является главное напряжение в направлении действия приложенной силы. Разрушение при одноосном испытании происходит в момент, определение которого зависит от того, что именно считается разрушением, и от реакции материала на внешнюю нагрузку. Соответствующее разрушающее напряжение (J/ в момент начала разрушения в одноосном состоянии может быть, таким образом, пределом прочности, пределом текуче-  [c.132]


Цель этих испытаний — определить массовую долю связующего Св. св> которое вытекает при переработке препрега в композит. (Связующее должно быть достаточно текучим, чтобы обеспечить пропитку армирующего компонента, но не полностью вытекать из материала).  [c.456]

Материал может быть анизотропным, т. е. не все материальные линии в нем будут равноценны с точки зрения реологического поведения. Тогда коэффициенты в f J можно будет связать с некоторыми векторами, параллельными материальным линиям, ориентированным вдоль преимущественных или особых направлений в теле. Мы будем рассматривать тела, изотропные в том смысле, что в них отсутствуют такие преимущественные или особые направления. Термин анизотропный в реологии подчас имеет весьма различное толкование при описании того факта, что текучий материал (изотропный в приведенном выше смысле) может проявлять анизотропное поведение по отношению к связи между малыми изменениями заданного состояния течения и соответствующими малыми изменениями напряжения. Такого рода анизотропию следует рассматривать скорее как обусловленную течением, нежели как присущую самому материалу.  [c.98]

Мы будем разыскивать уравнения материала, который в некотором отношении сочетал бы свойства эластомера и ньютоновской жидкости. Невзирая на большое число уже известных уравнений для эластичных жидкостей, можно ожидать, что выведенное нами уравнение окажется пригодным для описания текучих полимерных систем типа концентрированных растворов высокомолекулярных веществ и расплавов полимеров. Мы изберем простой способ сочетания эластических и ньютоновских свойств, поскольку наша главная цель заключается в пояснении рассмотренных положений и иллюстрации предложенных методов. Установленные частные уравнения дают тем не менее достаточно точное количественное описание большинства основных реологических свойств концентрированных полимерных растворов.  [c.136]

Предметом механики жидкости и газа является модель сплошной текучей среды с приписываемыми ей физическими свойствами, феноменологически отражающими молекулярную структуру среды и происходящие в ней внутренние движения материи.  [c.9]

Кроме только что отмеченных двух основных и достаточно общих свойств сплошной текучей среды 1) непрерывности распределения физических свойств и характеристик движения и 2) текучести, или легкой подвижности, при рассмотрении частных классов задач приходится приписывать модели среды дополнительные макроскопические характеристики, определяющие ее индивидуальные материальные свойства, обусловленные действительными микроскопическими свойствами молекулярной структурой и скрытыми движениями материи. В механике сплошных сред эти характеристики вводятся феноменологически, в форме заданных наперед констант или количественных закономерностей. Среди таких характеристик выделим, прежде всего, отражающие вещественные свойства среды при ее равновесном состоянии молекулярный вес и плотность распределения массы (или, короче, просто плотность среды), концентрацию примесей в многокомпонентных и многофазных смесях жидкостей, газов и твердых частиц, затем температуру и теплоемкость среды, электропроводность, магнитную проницаемость и другие физические свойства.  [c.10]

Выбор макроскопической модели сплошной текучей среды с приписанными ей теми или другими свойствами отнюдь не освобождает от необходимости хотя бы беглого ознакомления с действительной молекулярной структурой жидкостей и газов и происходящими в них внутренними движениями молекул (атомов), составляющими сущность теплового движения материи. Газы, жидкости и твердые тела имеют различные микроструктуры, вследствие чего различаются между собой и тепловые движения в них. Каждое из этих трех агрегатных состояний вещества можно охарактеризовать отношением порядков величин потенциальной энергии силового взаимодействия между молекулами и кинетической энергии их теплового движения. Это отношение зависит от плотности упаковки молекул в данной структуре, т. е. от порядка средних расстояний между молекулами.  [c.12]

Схема рабочей части экструдера представлена на рисунке. Порошок или гранулы, засыпанные в бункер, захватываются шнеком и, продвигаясь вдоль оси, проходят I, II и III температурные зоны разогреваясь к концу шпека до вязко-текучего состояния, материал продавливается через решетку (перед головкой) и формующие устройства. Решетка создаст сопротивление, необходимое для уплотнения расплава, задерживает крупные, непрогретые частицы материала и устраняет вредное действие шнека на материал.  [c.466]

Интервал температур формовки экструзионного листа 125—150 °С, блочного 150—200 °С. С уменьшением кратности вытяжки детален W = h В h — высота формы В — ширина ее основания) граница области формования смещается в область низких температур. Нижняя граница интервала температур формовки соответствует середине области высокоэластичного состояния верхняя граница совпадает с началом области перехода материала в текучее состояние.  [c.334]

Аналитическое решение. Исходя из известных положений б/1-модели, представим зону пластичности разрезом, к берегам которого приложены постоянные сжимающие напряжения, равные пределу текуче-сти материала на растяжение ат.  [c.221]

Рассмотрим теперь чистый изгиб балки из упруго-идеально-пластического материала (рис. 9.1). Когда приложенный изгибающий момент мал, максимальное напряжение не превышает предела текуче-сти (Тт и балка находится в состоянии обычного упругого изгиба с линейным законом распределения напряжений, как показано на рис. 9.3, а. При таких условиях из уравнений (9.1)—(9.4) следует,  [c.348]


Концепции упругости текучих материалов и памяти по отношению к прошлым деформациям, хотя они и тесно связаны одна с другой, все же нельзя рассматривать как эквивалентные. Такие явления, как упругое последействие, очевидно, относятся к области, интуитивно рассматриваемой как упругость. Однако существуют такие наблюдаемые в реальных материалах явления, которые, хотя и подкрепляют концепцию памяти материала по отношению к прошлым деформациям, все же не отвечают нашим интуитивным представлениям об упругости. Типичные явления этого типа известны как реопексия и тиксотропия . Реопектиче-ские или тиксотропные материалы, подвергаемые сдвигу, как, например, в условиях линейного течения Куэтта, обладают зависящей от BjjeMeHH кажущейся вискозиметрической вязкостью, значение которой зависит от продолжительности сдвига и достигает асимптотического значения после весьма долгого периода. Однако такие материалы после мгновенного прекращения деформации не обязательно проявляют упругое последействие.  [c.76]

Для жидких и аморфных вязких материалов (смол, компаундов) важным параметром является вязкость. Вязкость свойственна текучим телам, где имеет место сопротиЬление перемещению одной части (одного слоя) тела относительно другой. Это сопротивление характеризуется динамической вязкостью (Па-с) и кинематической вязкостью (м /с), равной отношению динамической вязкости к плотности материала. На практике пользуются условной вязкостью (ВУ), которая связана с динамической и кинематической эмпирическими соотношениями. Условная вязкость измеряется с помощью вискозиметров разных типов. С помощью капиллярных или универсальных вискозиметров ВУ измеряется,по времени истечения заданного объема жидкости через капилляр или сопло заданного диаметра. В ротационных вискозиметрах испытуемая жидкость загружается в пространство между коаксиальными цилиндрами, один из которых неподвижный, а другой вращается. ВУ определяется по затрате мощности на вращение цилиндра. Вязкость определяет электрические свойства электроизоляционных материалов и такие технологические процессы производства электрической изоляции, как пропитка твердых материалов лаками, компаундами, прессование материалов и изделий из них. Вязкость минерального масла определяет конвекционный теплоотвод от нагретых частей в окружающую среду в масляных трансформаторах, выключателях и других устройствах.  [c.189]

Иористып материал может быть получен в виде легкого текучего несминающегося порошка или прессованных и вальцованных плит, пленки, листов, труб и т. п.  [c.59]

Для осуществления той или иной системы со взвешенным материалом (псевдоожижениым слоем, взвешенным слоем и т. д.) важное значение имеют расположение мест подачи и отвода взвешивающей среды и материала, наличие и расположение решетки, ограничивающей движение материала, интенсивность подачи материала и среды. Лапидус и Элджин [Л. 692] приводят примерную классификацию вертикальных систем со взвешенным материалом свободных и с механическим сдерживанием материала (restrained). Свободные системы — те, где поток материала не сдерживается никакими специальными устройствами внутри трубы (колонны), а регулируется извне подачей материала (при достаточной для взвешивания подаче текучей среды). Системы с механическим сдерживанием материала— те, где путь частиц в трубе ограничен решетками, а расход материала через систему регулируется в месте его выхода. По взаимному направлению движения материала и текучего различают, как обычно, прямоточные и противоточные системы, по направлению движения материала — системы с восходящим и нисходящим перемещением его.  [c.136]

Свободная противоточная система. Частицы и текучее подаются с противоположных концов вертикальной трубы. Если объемный вес материала ум больше удельного веса среды ус, то частицы подаются вверху и падают вниз (противоточный падающий слой — по терминологии 3. Ф. Чуханова). Частным случаем свободной противоточной системы является осаждение слоя, при котором падение материала происходит сквозь спокойную жидкость. Если Ymсистеме материал подается снизу, а текучее — сверху.  [c.136]

Уилхелм и Валентайн [Л. 605] исследовали свободную систему с подачей материала посредине высоты трубы. Подобную систему нельзя отнести ни к чисто противо-точным, ни к чисто прямоточным. Она работает как про-тивоточная или прямоточная в зависимости от скорости потока текучего.  [c.137]

Рассмотрим, какова должна быть скорость захлебывания падающего слО Я — максимальная скорость текучего, превышение которой приводит к приостановке падения и уносу материала вверх выше места его подачи. При падаюш,ем слое (рис. 3-4) участок трубы выше места подачи материала можно рассматривать как пнев-мотранспортную систему, которая при нормальной работе падающего слоя не должна функционировать, а должна быть свободна от твердых частиц, для чего скорость текучего в ней не должна превосходить скорости захлебывания . С этой точки зрения при постоянстве сечения трубы предельная скорость газов для падающего слоя будет равна скорости захлебывания пневмотранспорта, с той лишь разницей, что для падающего 150  [c.150]

В псевдоожижепном слое может происходить интенсивное перемешивание материала к текучего. Перемешивание интенсифицирует одни процессы и ослабляет другие. Оно оказывает существенное влияние на теплообмен, массообмен и протекание химических реакций 180  [c.180]

Слой исевдоожижает ся, и движение частиц начинается лишь при достаточно большой ско--рости -фильтрации. В этом смысле движение текучего первично. Но частицы и особенно агрегаты частиц в своем движении могут увлекать за собой текущую среду и вызывать ее перемешивание. Так, например, циркуляция материала, схематично показанная на рис.  [c.181]

Обвязывание изделий В 65 (В 13/00-13/34 конструктивные элементы и вспомогательные устройства обвязочных машин В 13/18-13/34 предохранительные элементы для связываемых изделий D 59/00-63/00) Обгонные муфты насосами объемного вытеснения 31/00-31/08 комбинированные с автоматически выключаемыми муфтами 45/00 механические 41/00-41/36 с текучей рабочей средой 31/00-39/00) F 16 И (в гидродинамических 61/60 в зубчатых 3/10) передачах) ОбдувочЕ1ые устройства (использование для удаления золы из дымоходов F 23 J 3/00 для паровых котлов 22 В 37/54) Обезвоживание воздуха в пневматических системах F 16 L 55/09 Обезжиривание металлических изделий (химическими С 23 G электролитическими С 25 F 1/00) способал < Обезуглероживание предотвращение при изготовлении формовочных смесей В 22 С 1/04-1/06 ферросплавов С 21 (диффузией D 3/04 в расплавленном состоянии С 7/068)) Обертки В 65 D ( (амортизирующие для упаковки 81/14 заготовки оберток для упаковываемых 75/00-75/38) изделий и материалов как упаковочный элемент 65/00-65/36) Оберточный материал В 65 В (подача для (завертывания 11/06-11/46 изготовления тары 41/00-41/18) устройства для (завертывания в него изделий 49/00-49/16 его поддерживания при упаковке  [c.121]

Регулирование [ [двигателей объемного вытеснения В 25/(00-14) (паросиловых К 7/(04, 08, 14, 20, 28) паротурбинных К 7/(20, 24, 28)> установок-, распределителышх клапанов двигателей с изменяемым распределением L 31/(20, 24) турбин путем изменения расхода рабочего тела D 17/(00-26)] F 01 движения изделий на металлорежущих станках, устройства В 23 Q 16/(00-12) F 04 [диффузионных насосов F 9/08 компрессоров и вентиляторов D 27/(00-02) насосов <В 49/(00-10) необъемного вытеснения D 15/(00-02)) и насосных установок (поршневых В 1/(06, 26) струйных F 5/48-5/52) насосов] F 02 [забора воздуха в газотурбинных установках С 7/057 зажигания ДВС Р 5/00-9/00 подогрева рабочего тела в турбореактивных двигателях К 3/08 реверсивных двигателей D 27/(00-02) (теплового расширения поршней F 3/02-3/08 топливных насосов М 59/(20-36), D 1/00) ДВС] зазоров [в зубчатых передачах Н 55/(18-20, 24, 28) в муфтах сцепления D 13/75 в опорных устройствах С 29/12 в подшипниках <С 25/(00-08) коленчатых валов и шатунов С 9/(03, 06))] F 16 (клепальных машин 15/28 ковочных (молотов 7/46 прессов 9/20)) В 21 J количества (отпускаемой жидкости при ее переливании из складских резервуаров в переносные сосуды В 67 D 5/08-5/30 подаваемого материала в тару при упаковке В 65 В 3/26-3/36) конденсаторов F 28 В 11/00 G 05 D [.Mex t-нических (колебаний 19/(00-02) усилий 15/00) температуры 23/(00-32) химических н физико-химических переменных величин 21/(00-02)] нагрузки на колеса или рессоры ж.-д. транспортных средств В 61 F 5/36 параметров осушающего воздуха и газов в устройствах для сушки F 26 В 21/(00-14) парогенераторов F 22 В 35/(00-18) подачи <воздуха и газа в горелках для газообразного топлива F 23 D 14/60 изделий к машинам или станкам В 65 Н 7/00-7/20 питательной воды в паровых котлах F 22 D 5/00-5/36 текучих веществ в разбрызгивающих системах В 05 В 12/(00-14))  [c.162]


Сигнальные устройства [транспортных средств осветительные переносные для установки снаружи F 21 Q 1/00, 5/00 в трубопроводах F 17 D 3/03, 5/00-5/06 в упаковочных машинах В 65 В 57/(00-18) в устройствах для переливания жидкости из складских резервуаров в перевязочные контейнеры В 67 D 5/32 в шахтных печах F 27 В 1/28] Сиденья [велосипедов, мотоциклов и т. п. В 62 J 1/00-1/28 в ж.-д. вагонах В 61 D 1/04-1/08, 33/00 В 64 D (самолетов (модификация 25/04 катапультируемые 25/10 конструктивные особенности 11/06)) транспортных средств, размещение и конструктивные особенности В 60 N 2/00-2/24] Сила G 01 L (взрывов, измерение 5/14 измерение (1/00-1/26, G 05 D 15/00 составляющих силы 5/16 усилия, приложенного к органам управления, 5/16) градуировка и испытание устройств для ее измерения 25/00) (трения, N 19/02 удара L 5/00) измерение G 01 тяжести [воздухоочистители, работающие под действием силы тяжести F 02 М 35/022 измерение G 01 V 7/00] использование [градиента силы тяжести для управления летательными аппаратами В 64 С 1/34 для выделения дисперсных частиц из газов или паров В 03 С 3/14 В 65 В <для дозирования сыпучего материала при упаковке в тару 1/06 для подачи упаковываемых материалов или изделий 35/(12, 32), 37/02) для нанесения жидкости или других текучих веществ на поверхность В 05 D 1/30. для перемещения заготовок в устройствах по изготовлению листовою металла давлением В 21 D 43/16] Силовые [системы в канатных дорогах В 61 В 10/(00-04) установки [с ДВС, работающими на (газообразном 43/(00-12) твердом 45/(00-10)) топливе F 02 В В 64 (дирижаблей В 1/24-1/34 летательных аппаратов (С 1/16, D 27Д00-26) вспомогательные D 41/00 системы управления D 31/(00-14)) измерение осевого давления вращающегося вала G 01 L 5/12]  [c.174]

Сопла [горелок F 23 D (для газообразного 14/(18-58) для жидкого 11/38) топлива динамика текучих сред в соплах F 15 D 1/08 изготовлепие и закрепление в металлических сосудах В 21 D 51/42 отсечные клапаны для сопел F 16 К 5/04 в пескоструйных машинах В 24 С 3/(12, 22, 28) F 02 (для ракетных двигательных установок К 9/97 топливных форсунок М 61/18 с устройствалт для реверса тяги в реактивных двигателях К 1/54-1/76, 9/92 распыляющие (общие вопросы В 05 В 1/00 для оросительных холодильников F 28 F 25/06 в парогенераторах F 22 В 27/16) реактивные (расположение на самолетах и т. п. В 64 D 33/04 F 02 К (реактивные двигатели, отличающиеся по форме или расположению сопел, 1/00-1/82 регулируемые для управления положением самолетов и т. п. в воздухе 1/10, В 64 С 15/00)) свободноструйных гидротурбин F 03 В 1 04 в смесшпел.чх-распылителях В 01 F 5/20 струйных насосов F 04 F 5/46 турбин (F 01 D 9/02 электроэрозионная обработка В 23 FI 9/10)] Сопротивление акустическое, измерение С 01 Н 15/00 Сорбенты, составы В 01 J 20/(00-34) Сорбционные холодильные машины, установки и системы F 25 В (непрерывного 15/16 периодического 17/(00-10)) действия Сортировка [материала после дробления или измельчения В 02 С 23/(08-16) снарядов или патронов F 42 В 35 02 твердых материалов В 07 В (100-  [c.180]

Тара [В 65 (подача (листового материала для изготовления тары В 41/(00-18) к месту упаковки и расстановка В 43/(42-62)) складная D 6/16-6/26, 8/14 способы и устройства для наполнения В с термоизоляцией D 81/38 удаление пыли из тары В 55/24 упаковка изделий из материалов в нее В 1/00-1/48, 3/00-3/36, 5/00-5/12 упаковочные машины с устройствами для изготовления тары В 1/02, 3/02, 5/02 устройства, предотвращающие ее повторное наполнение D 49/(00-12) формирование, подача, открывание, расправление и т. п. в процессе упаковки В 43/(00-10) > для радиоактивных веществ G 21 F 5/00-5/04] Тараны гидравлические F 04 F 7/02 Градуировка приборов G 12 В 13/00 Твердость, исследование OIN 3/40-3/54 Твердотопливные ракетные двигатели F 02 К 9/08-9/40 Твердые ( пористые материалы, изготовление С 08 J 9/00 припои для пайки металлов В 23 К 35/28 сорбенты В 01 J 20/(00-34) частицы, разделение с использованием электростатического эффекта В 03 С 7/00-7/12) Текучие среды [выбор для гидравлических передач F 16 Н 41/32 горючие, использование для соединения пластических материалов В 29 С 65/26 измерение <их давления L 7/00-23/32 их объема, расхода и уровня F их скорости Р 5/00) G 01 использование <(для генерирования сейсмических волн V 1/(133, 137) в измерительных приборах В 13/(00-24) для испытания устройств на герметичность М 3/00-3/36) G 01 (в муфтах сцепления D 31/00, 33/00 в передачах Н (39-47)/00) F 16 для очистки и обогрева грохотов и сит В 07 В 1/55, 1/58 сжатых текучих  [c.186]

Если материал ведет себя как совокупность максвелловского и кельвиновского тел (аппроксимируется последовательным соединением этих элементов), то обычно Эд < 0р, где 0р — максвелловское время релаксации. При подобном модельном описании запаздывающей деформации может быть использовано также понятие вязкости т]д, которая П. А. Ребиндером называется вязкостью эластичности [22], X. Лидерманом — внутренней вязкостью [41 I. Часто допущение о простой зависимости 63 от деформации или времени позволяет получить прекрасное согласие такого рода зависимостей с экспериментом. Примером этого может служить работа [23 ], в которой для полимеров в текучем состоянии было принято, что 03 1/7э- Это означает, что период запаздывания растет с разворачиванием гибких цепей макромолекул.  [c.104]

Основной принцип работы аэрозольтранспорта заключается в том, что сжатый воздух подается в плотные слои материала через пористую перегородку в капиллярно-распыленном виде. При этом связь между частицами нарушается, и образующиеся поры заполняются воздухом. В результате трение между частицами заменяется трением воздуха, окружающего эти частицы, и материал становится текучим. В таком псевдоожиженном состоянии твердые частицы материала заполняют все сечение транспортирующей трубы и под избыточным давлением перемещаются к месту разгрузки. При этом материал стремится двигаться по трубе всей массой, а не в виде отдельных частиц.  [c.9]


Смотреть страницы где упоминается термин Материал текучий : [c.87]    [c.14]    [c.42]    [c.75]    [c.95]    [c.151]    [c.14]    [c.129]    [c.154]    [c.190]    [c.10]    [c.52]    [c.210]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.73 ]



ПОИСК



Понятие памяти для текучих материалов

Состояние материала вязко-текучее

Состояние материала пластичное (текучее)



© 2025 Mash-xxl.info Реклама на сайте