Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания одноосное

Поскольку в общем случае функции fi(Aei) и f2(Aei) зависят от напряженного состояния, уравнения типа (2.87) не являются инвариантными относительно этого состояния. Поэтому использование уравнений типа (2.87), полученных при испытаниях одноосных образцов, для анализа повреждаемости материала в окрестности вершины трещины не является правомерным.  [c.131]

Рис. 5.4. Испытание одноосно-армированного волокнистого материала под углом к главным осям. Рис. 5.4. Испытание одноосно-армированного <a href="/info/1471">волокнистого материала</a> под углом к главным осям.

Устанавливается зависимость 5с(еР) посредством испытаний при различных температурах одноосных гладких образцов, для которых условие зарождения микротрещины достигается значительно раньше, чем условие ее распространения.  [c.97]

До недавнего времени исследование чувствительности материала к коррозионной среде проводили при статических испытаниях образцов. Обычно одноосные образцы нагружали до определенного значения напряжений или деформаций и фиксировали время их разрушения. Серия такого рода испытаний позволяла получить зависимость долговечности от действующих напряжений т/(ст) (21, 175, 209, 239]. Если образец при напряжениях Oih не разрушался за некоторое установленное время испытаний (обычно 1000 или 5000 ч, то считалось, что при а < С Oth материал не чувствителен к коррозионной среде, в которой проводятся испытания. Если же ath Ов (<Тв — предел прочности), то считалось, что данная коррозионная среда не влияет  [c.344]

Кроме того, такие испытания требуют очень сложных машин и приборов. Необходимо поэтому иметь какую-то гипотезу (теорию), которая позволила бы оценивать опасность перехода материала в предельное состояние при сложном напряженном состоянии, не прибегая каждый раз к трудоемким опытам, а используя лишь данные наиболее простых опытов, т. е. опытов с одноосным напряженным состоянием.  [c.222]

В случае одноосного напряженного состояния задача решается весьма просто. Производится испытание материала на растяжение. На диаграмме растяжения выбирается характерная точка, соответствующая предельному напряжению данного материала. Обычно в качестве предельного напряжения берется либо предел текучести а р, либо предел прочности Одр.  [c.260]

Основные механические характеристики материала определяют, испытывая образцы в условиях одноосного напряженного состояния. Имеются также некоторые данные о механических характеристиках при чистом сдвиге, полученные испытанием образцов на кручение.  [c.190]

Если внешние нагрузки невелики, то в материале детали возникают только упругие деформации. Говорят, что материал находится в упругом состоянии. С ростом внешних сил в материале появляются заметные остаточные деформации, значит материал перешел из упругого в пластическое состояние. И, наконец, с увеличением нагрузки наступает момент, когда целостность материала нарушается, начинается разрушение материала в буквальном смысле слова. В таком случае говорят, что материал перешел из пластического состояния в состояние разрушения. При испытании материалов на одноосное растяжение было установлено, что не все материалы одинаково ведут себя под нагрузкой. У пластичных материалов состоянию разрушения предшествует заметное на глаз пластическое состояние. Наоборот, хрупкие материалы переходят в состояние разрушения при очень малых остаточных деформациях, т. е. практически минуя пластическое состояние.  [c.320]


Испытание материалов на одноосное растяжение позволяет определить, при каком числовом значении главного напряжения происходит переход материала из одного состояния в другое.  [c.320]

Выражения (1.8.6) и (1.8.7) называют законом упругого изменения объема. Этот закон справедлив и при значениях среднего напряжения, намного превышающих обычный предел упругости материала (т. е. установленный в лабораторных условиях при испытании на одноосное растяжение или сжатие).  [c.24]

Последовательность смены механических состояний типична для пластичных материалов и хорошо прослеживается при одноосном нагружении, например, при растяжении или сжатии образцов. При этом можно установить предел текучести от этого материала, а подвергая такому же испытанию образец из хрупкого материала, устанавливается предел прочности ов. Предел текучести для пластичного материала от и предел прочности ов для хрупкого материала являются предельными напряжениями этих материалов, т. е. опасными. Иное положение наблюдается при сложном напряженном состоянии. В этом случае предельное состояние зависит от соотношения величин главных напряжений 0 , 02 и 03. Большая сложность постановки опытов и чрезвычайно большое многообразие соотношений величин 0 , сгз и 03 не позволяют достаточно полно исследовать сложное напряженное состояние опытным путем.  [c.91]

Для того, чтобы избежать сложных экспериментов и дорогостоящих натурных испытаний (в отдельных случаях на это идут, например, в самолетостроении) следует исходить из испытаний стандартных образцов материала, делать на этой основе необходимые обобщения и устанавливать закономерности, подтверждаемые испытаниями образцов. Наиболее целесообразным является путь замены сложного напряженного состояния эквивалентным ему одноосным, легко проверяемый опытом, например, растяжением (рис. 7.1.1). Эта деформация наиболее изучена, а промышленность выпускает достаточное количество испытательных машин, обеспечивающих запись диаграмм растяжения.  [c.92]

Одноосные индикаторно-силовые гироскопические стабилизаторы с поплавковыми гироскопами или датчиками угловой скорости не находят самостоятельного применения в авиации, ракетной технике или морском флоте. Такие приборы, так же как и силовые одноосные гиростабилизаторы, являются составной частью двух- или трехосных пространственных гиростабилизаторов, а также широко используются при испытаниях и исследованиях, например, интегрирующих гироскопов в лабораторных условиях.  [c.288]

Исследование движения одноосного гиростабилизатора на трехкомпонентном стенде показывает, что присущее именно такому стенду движение платформы порождает у гиростабилизаторов постоянную составляющую скорости прецессии гироскопа, иногда достигающую весьма значительной величины. Вместе с тем такой стенд не отражает реального движения самолета, так как продольное движение самолета не зависит от бокового и имеет частоту, отличную от частоты бокового движения, колебания же платформы трехкомпонентного стенда относительно прямоугольных осей координат х , i/i, Zi происходит с одинаковым периодом и постоянным сдвигом фаз. Таким образом, общепринятые испытания гиростабилизаторов на трехкомпонентных стендах не соответствуют реальным условиям полета и могут привести к браковке качественных приборов.  [c.392]

Важнейшей задачей инженерного расчета является оценка прочности детали по известному напряженному состоянию. Наиболее просто эта задача решается для простых видов деформации, в частности для одноосных напряженных состояний, так как в этом случае значения предельных (опасных) напряжений легко установить экспериментально. Под опасными напряжениями, как уже указывалось, понимают напряжения, соответствующие началу разрушения (при хрупком состоянии материала) или появлению остаточных деформаций (в случае пластического состояния материала). Так, испытания образцов из данного материала на простое растяжение или сжатие позволяют без особых трудностей определить значения опасных напряжений  [c.200]


Такая последовательность смены механических состояний типична для пластичных материалов и с достаточной очевидностью вытекает из испытаний образцов на растяжение и сжатие. Возникают вопросы способны ли эти испытания в полной мере характеризовать механические свойства материала и что будет, если испытания проводить в условиях не одноосного, а, скажем, трехосного напряженного состояния  [c.344]

Таким образом, результаты испытаний на одноосное растяжение и сжатие становятся как бы эталоном прочности, с помощью которого устанавливается прочность материала в любом случае напряженного состояния.  [c.342]

Бочкообразная форма, которую принимает образец из пластичного материала в процессе испытания на сжатие, обусловливается тем, что между опорами мащины и его торцовыми сечениями существуют силы трения, препятствующие свободному поперечному расщирению этих сечений. Напряженное состояние в таких образцах не будет одноосным и найденное значение будет условным.  [c.40]

Такой образец и схема сил, на него действующих, показаны на рис. 11.9, в, где / — коэффициент трения между материалами образца и опор, а а = /. Этот образец будет испытывать одноосное сжатие во всех своих сечениях, и его форма в процессе испытания будет цилиндрической. Однако изготовление таких образцов и опор к ним трудоемко и дорогостояще, поэтому они в настоящее время используются только в экспериментальных научно-исследовательских работах.  [c.41]

У цветных металлов базы испытаний, выдержав которую образец не разрушился бы в дальнейшем, не существует. Поэтому для них за предел выносливости при одноосном напряженном состоянии принимается наибольшее максимальное при о > о, или наибольшее по абсолютной величине минимальное при о < 0 напряжение цикла, при котором образец выдержал определенное число циклов N без разрушения (часто принимают N = 10 ), и говорят, что предел выносливости определен на базе испытаний N, называя его ограниченным и обозначая (1 , — при чистом сдвиге  [c.337]

При одноосном напряженном состоянии бруса вопрос об истинной причине разрушения материала не имеет большого практического значения, так как допускаемые напряжения всегда могут быть определены из результатов непосредственного испытания материала.  [c.97]

В четвертой главе дается решение одного из принципиальных вопросов теории метода механических испытаний — вопроса о расчете напряжений и деформаций в шейке образца при одноосном растяжении, что открывает возможности использования таких испытаний для исследования больших деформаций. В дальнейшем глава носит прикладной характер, показывая, как найденные закономерности деформационного упрочнения могут применяться для объяснения получаемых при обработке металлов давлением результатов по механическим свойствам.  [c.4]

Существующее многообразие принципов классификации механических испытаний [16, 45, 46] позволяет сравнительно свободно решать самые различные задачи. В частности, при изучении процесса деформационного упрочнения важно проводить испытания так, чтобы металл имел возможность максимально проявить свои пластические свойства. Предложенная Фридманом [1] оценка жесткости разных видов механических испытаний через коэффициент мягкости а, основанная на анализе всех возможных видов напряженного и деформированного состояния, позволяет расположить наиболее распространенные из них в следующий ряд (по степени увеличения способности металла к пластической деформации) трехосное растяжение — двухосное растяжение — одноосное растяжение — кручение — одноосное сжатие — трехосное сжатие.  [c.30]

Рассмотрим результаты фрактографических исследований. Предпринятый в работе [212] анализ поверхности разрушения указанных сталей показал, что в условиях одноосного растяжения смена механизмов разрушения при изменении температуры испытания подчиняется общим для простых моно- и поликрг.с-таллов с ОЦК решеткой закономерностям и в изломе можно наблюдать следующие фрактуры скол, расслоение, чашечную. При Т = —196 °С разрушение происходит по механизму микро-скола. В качестве примера на рис. 2.4, а и б показана поверхность разрушения стали 15Х2НМФА в исходном состоянии и после термообработки. Характерный размер фасеток скола составляет 10—20 мкм. С повышением температуры деформирования в изломе появляются вязкие составляющие расслоения и ямки. В температурном интервале от —160 до О °С фрактура становится смешанной присутствуют трещины расслоения, фасетки скола и ямки (рис. 2.4,в) с ростом температуры постепенно уменьшается доля хрупкой составляющей и увеличивается вклад вязких компонент. При Г >—100 °С фасеток скола в изломе нет, в температурном диапазоне от —100 до —50 °С количество расслоений максимально (средняя их плотность по-  [c.53]

Во второй серии опытов были выполнены испытания на одноосное растяжение в низкотемпературной области для стали 15Х2МФА после предварительного деформирования, которое осуществляли растяжением при комнатной температуре да пластической деформации ео = 2 и 6 %. Обработку данных и расчет S выполняли так же, как и для образцов в исходном состоянии.  [c.74]

Результаты всех трех серий испытаний представлены на рис. 2.10 в координатах 5с — х (рис. 2.10, а, в) и 5с — е/ рис. 2.10,6). Результаты третьей серии опытов дополнительно лриведены в табл. 2.2. Для образцов, испытанных на одноосное растяжение в первой серии, очевидно, х = е/. Для предварительно статически деформированных образцов (вторая серия) и вычисляли по соотношению х = ео-Ье/. Для образцов, испытан-  [c.75]

Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]


На первом этапе были изучены продольные шлифы гладких цилиндрических образцов, испытанных на растяжение при Т = = —196°С. Согласно разработанной модели, при одноосном растяжении таких образцов их хрупкое разрушение контролируется процессом распространения микротрещин скола. Зарождение же микротрещин скола начинается в соответствии с условием (2.7) при напряжениях и деформациях меньше разрушающих. Однако эти микротрещины при ai < S будут остановлены различными барьерами (границами зерен, границами фрагментов и т. п.). Поэтому на продольном шлифе должны наблюдаться такие остановленные микротрещины, причем их длина может быть различной — от размера зерна (если микротрещина остановлена границами зерна) до размера фрагмента деформацион-  [c.87]

Первое обстоятельство согласуется с известными фактами влияния степени повреждения стали 12Х1МФ и нимоника 80А на скорость ползучести [116], второе подтверждается нашими испытаниями сплава ХН55МВЦ. Несмотря на значительный разброс экспериментальных данных, на рис. 3.9 видно, что благодаря объемному сжатию при давлении 8 МПа долговечность и удлинение образцов в полтора-два раза больше, чем в случае одноосного нагружения. При таком разбросе соответствие экспериментальных данных и расчетных результатов можно считать вполне удовлетворительным.  [c.178]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]

В действительности же этот способ оказывается нереальным, так как при каждой новой комбинации главных напряжений пришлось бы снова производить эксперимент и опытным путем получать каж ь й раз свои значения главных предельных напряженни. На практике встречается такое большое количество различных сочетаний главных напряжений, что. для всех применяемых конструкционных материалов создать каждое нз них в лабораторных условиях оказывается неосуществимым не только из технических, по и экономических соображений. Поэтому возникает неббходимость оценивать прочность в сложном напряженном состоянии, основываясь на результатах испытаний материалов иа одноосное растяжение. Это становится возможным при использовании так называемых гипотез прочности — научных предположений о причинах перехода материалов в опасное состояние.  [c.321]

Теперь представим себе, что мы ведем испытание не при одноосном, а при трехосном напряженном состоянии. Примем для простоты, что насбычное растяжение у нас накладывается равномерное всестороннее растяжение, либо всестороннее сжатие, т. е. наложена шаровая составляющая тензора. Тогда для пластичного материала картина будет выглядеть следующим образом. При наложении всестороннего растяжения круг Мора (рис. 57, а), не меняя своего диаметра, сместится вправо и при дополнительном увеличении напряжения а он сначала коснется предельной кривой разрушения. Это означает, что произойдет хрупкий разрыв. Пластичный материал проявляет свойство хрупкости.  [c.90]

Как известно, наиболее легко осуществимыми экспериментами являются испытания образцов при одноосном растяжении и одноосном сжатии, а тдкже испытание трубчатых образцов на кручение. При этих простеЙ1 иих нагружениях образцов их основная ( рабочая ) часть находится в условиях однородных простейших напряженных еов-тояний (одноосного и чистого сдвига).  [c.56]

Необходимо четко определить понятие пластичности материала как свойство получать перед разрущеннем значительные остаточные деформации. Можно подробно не рассказывать о пластическом и хрупком состояниях материала, указав только, что речь идет о свойствах, выявляемых при испытаниях на одноосное растяжение при комнатной температуре и малой скорости деформации.  [c.76]

Например, при однорсном растяжении при кручении =0 при одноосном сжатии fe=— 1-КЗ, в связи с чем показатели пластичности и предел пластичности различны по величине, т. е. при разных значениях k достигается разный уровень деформации в момент разрушения. Поэтому, например, считают, что испытание на скручивание лучше отражает технологические особенности поведения металлов в реальных процессах обработки давлением, так как деформация при скручивании больше, чем при растяжении, и приближается к величине, характерной для технологических процессов ОМД. Естественно стремление многих исследова-  [c.489]

При двухосном (плоском) и трехосном (пространственном) напряженных состояниях возможны самые различные соотношения между главными напряжениями. Для того чтобы экспериментально установить значения этих напряжений, соответствующие допускаемым состояниям, необходимо провести очень большое число испытаний при различных соотношениях между главными напряжениями. Практически осуществить такие эксперименты невозможно не только из-за больщого их числа, но также в связи с трудностью их проведения. Поэтому приходится, используя результаты опытов на одноосное растяжение и сжатие материала, теоретически (с помощью так называемых теорий прочности) определять его прочность для любых случаев двухосного и трехосного напряженных состояний.  [c.342]

Рис. 111. Влияние способа выплавки и температуры отпуска на коррозионное растрескивание (время до разрушения образцов в коррозионной среде) электростали (/) и стали ВДП (2). Продольные цилиндрические шлифованные образцы диаметром 5 мм после закалки с 890° С в масле и отпуска при 150—650° С в течение 2 ч испытаны иа одноосное растяжение на машине рычажного типа в 20 %-ном растворе HjSOi при 20 С. База испытаний 50 ч при напряжении 900 МПа (данные А. Б. Кус-лицкого) Рис. 111. Влияние способа выплавки и <a href="/info/233686">температуры отпуска</a> на <a href="/info/1553">коррозионное растрескивание</a> (время до разрушения образцов в <a href="/info/48280">коррозионной среде</a>) электростали (/) и стали ВДП (2). Продольные цилиндрические шлифованные образцы диаметром 5 мм после закалки с 890° С в масле и отпуска при 150—650° С в течение 2 ч испытаны иа <a href="/info/25667">одноосное растяжение</a> на машине рычажного типа в 20 %-ном растворе HjSOi при 20 С. <a href="/info/32788">База испытаний</a> 50 ч при напряжении 900 МПа (данные А. Б. Кус-лицкого)
Напряжения в компонентах материала. )лссчита)1ные по модели 21 при сжатии и кручении образцов, вырезанных вдоль оси х, далеки от их предельных значений, соответствующих разрушению матрицы и волокон однако при покомпонентных иаиряже-ииях, указанных в х -столбце табл. 6.25, материал 5ерсагЬ-40 испытывал расслаивание. То же справедливо и по отношению к испытаниям на одноосное сжатие образцов, вырезанных вдоль оси X II I и осесимметричное сжатие х-колец.  [c.200]


Смотреть страницы где упоминается термин Испытания одноосное : [c.333]    [c.198]    [c.29]    [c.73]    [c.127]    [c.345]    [c.278]    [c.279]    [c.124]    [c.125]    [c.450]    [c.6]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.190 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.209 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте