Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эластомеров свойства

Частным случаем является упругость. Идеально упругие тела полностью возвращаются в исходное состояние после разгрузки независимо от нагрузки и температуры. Упругость является реальным свойством большинства конструкционных материалов в определенном диапазоне нагрузок и температур. Нужно различать линейную и нелинейную упругость (рис. 9.1). Линейная упругость характерна для традиционных строительных материалов, большинства сплавов на металлической основе, нелинейная упругость — в основном для полимерных материалов (эластомеров, резин и др.).  [c.148]


Резина — эластичный материал — эластомер, получаемый путем вулканизации каучука, являющегося органическим полимером. Эластичность есть свойство материала сильно удлиняться при растяжении без значительного остаточного удлинения при снятии нагрузки за счет большой упругости. Резина получается из особого полимера — каучука, имеющего двойные связи. Наличие двойных связей обеспечивает вулканизацию — поперечную сшивку молекул каучука за счет взаимодействия с серой, вводимой в сырую резиновую смесь.  [c.210]

Широкое применение в электропромышленности и особенно в кабельных изделиях получила резина. Резина состоит из многокомпонентной смеси на основе каучуков и близких к ним по свойствам веществ, называемых эластомерами. Резина для получения необходимых свойств подвергается процессу так называемой вулканизации.  [c.220]

Большое значение в самых разнообразных отраслях техники и в быту имеют материалы на основе каучука и близких к нему по свойствам веществ —так называемых эластомеров.  [c.155]

B. Влияние силана на Свойства смеси эластомеров, не содержащих  [c.140]

В табл. 21 сопоставляются модули упругости при растяжении двух наполненных систем из эластомера ЕРОМ, вулканизованных серой и перекисью соответственно. В процессе изготовления 1% (от веса полимера) каждого указанного в таблице силана вводился на мельнице с двумя барабанами во время добавления наполнителя. Свойства определялись стандартными методами (полные  [c.168]

ВЛИЯНИЕ СИЛАНА НА УПРУГИЕ СВОЙСТВА ЭЛАСТОМЕРА ЕРОМ  [c.168]

По величине модуля упругости при растяжении наполненных эластомеров можно сделать вывод о том, что обработка О-силаном различных наполнителей дает аналогичный эффект, в то время как данные о прочности на разрыв свидетельствуют о различной чувствительности наполнителей к силану. Так, в случае двуокиси кремния, получено максимальное улучшение свойств глины ведут себя различно, а взаимодействие силана с двуокисью титана неожиданно привело к значительному росту прочности на разрыв. Влияние же силана на карбонат кальция оказалось незначительным, и свойства системы с этим наполнителем близки к свойствам ненаполненного полимера, обработанного П-силаном.  [c.172]

В. Влияние силана на свойства смеси эластомеров, не содержащих сажу  [c.172]

СВОЙСТВА ЭЛАСТОМЕРОВ ЗВР, ЕРОМ И НАТУРАЛЬНОГО КАУЧУКА, НАПОЛНЕННЫХ двуокисью КРЕМНИЯ И СОДЕРЖАЩИХ Н-СИЛАН [25]  [c.176]

Эластомерами и пластиками являются главным образом органические материалы, состоящие из атомов углерода и водорода, связанных ковалентными связями, которые легко разрушаются при поглощении энергии излучения. В этом отношении они отличаются от металлов и керамических материалов, которые характеризуются кристаллической структурой, обычно не содержат ковалентных связей и в меньшей степени изменяют свои свойства под действием облучения. Следовательно, радиационная стойкость эластомеров и пластиков ниже, чем у металлов и керамических материалов. Все виды излучений вызывают в полимерах химические изменения, в результате которых разрушаются имеющиеся и образуются новые связи. Поэтому большинство радиационных эффектов в этих материалах необратимо пне может быть устранено обработкой после облучения.  [c.49]


Эластомеры. Облучение дозами меньше 2,0-10 эрг г вызывает небольшое изменение диэлектрических свойств силиконовых эластомеров. Тем не менее их физические свойства изменяются при относительно малых дозах. В тех многочисленных случаях, когда не требуется высокой эла-  [c.96]

Пластмассы и эластомеры под действием излучения обычно становятся более прочными, но и более хрупкими, что может приводить к нарушению изоляции. Ионизационные эффекты имеют переходной характер. Они вызывают рост электропроводности, которая в свою очередь способствует увеличению поверхностных токов утечки в процессе облучения изоляторов. Газовыделение из облученных органических материалов и соединений свидетельствует о происходящих в них быстрых химических изменениях. Хотя в настоящее время и нельзя установить корреляцию между газовыделением и ухудшением изоляционных свойств, следует иметь в виду, что материалы, более склонные к газовыделению, наиболее легко подвергаются радиационным нарушениям. В табл. 7.12 приведены данные о газовыделении различных каучуков и пластмасс во время их облучения. Установлено, что полистирол и полиэтилен [104] наиболее стойки к облучению. Интегральные дозы по у-излучению, соответствующие порогу повреждений, составляют для полистирола 5-10 эрг г, для полиэтилена 1-10 эрг 1г.  [c.394]

Муфты с упругими элементами из эластомеров технологичнее, чем со стальными. Зато ресурс неметаллических упругих элементов меньще, чем стальных. Резина вследствие структурных изменений, ускоряемых внешними воздействиями, постепенно меняет свои упругие свойства.  [c.430]

Специалистами ВНИИГАЗа и ВНИИнефтемаша установлено, что основным повреждением скважинного оборудования АГКМ является негерметичность затрубного пространства и, как следствие, наличие в нем газовых шапок. Негерметичность затрубного пространства может быть вызвана негерметичностью лифтовой колонны, элементов подземного оборудования или уплотнений трубных и колонных головок. В свою очередь, негерметичность последних в значительной степени связана с применением уплотняющих элементов из эластомеров, которые в процессе эксплуатации теряют свои пластические свойства. Конструктивные особенности автоклавных уплотнений подвески насосно-компрессорных труб способствуют появлению перетоков через уплотнения. Наличие негерметичности вызывает попадание пластового газа в зоны технологического оборудования, где контакт металла с сероводородсодержащей средой не предусмотрен проектной схемой. Это приводит к значительному ужесточению условий эксплуатации элементов газопромыслового оборудования и, тем самым, к повышению риска его выхода из строя. Одним из последствий наличия негерметичности затрубного пространства и уплотнений колонных и трубных головок является неработоспособность проектной системы ингибиторной защиты металла от коррозии.  [c.173]

ВЛИЯНИЕ СИЛАНА НА СВОЙСТВА ВУЛКАНИЗОВАННОГО ПЕРЕКИСЬЮ И НАПОЛНЕННОГО ГЛИНОЙ ЭЛАСТОМЕРА ЕРОМ ) Таблица 23 ДИКУМИЛА  [c.170]

Таким образом, на основании приведенных и других многочисленных данных по этому вопросу можно сказать, что все ненасыщенные амино- или меркаптосиланы оказывают очень сильное влияние на свойства эластомеров, вулканизованных перекисью. Благодаря преимуществам как по стоимости, так и по рабочим характеристикам В-силан становится стандартным аппретом в производстве изоляции проводов и кабелей из эластомеров ЕРМ,  [c.170]

НА СВОЙСТВА ЭЛАСТОМЕРА НА ОСНОВЕ ЭТИЛЕНПРОПИЛЕНДИЕНОВОГО (ЕРОМ), БУТАДИЕНСТИРОЛЬНОГО (ЗВЕ) И НАТУРАЛЬНОГО КАУЧУКОВ, ВУЛКАНИЗОВАННЫХ СЕРОЙ )  [c.171]

Свойства эластомеров, наполненных двуокисью кремния, значительно улучшаются при введении 1 —1,2% (от массы полимера) Н-силана в процессе размола (табл. 26). Так, модуль упругости при растяжении композита увеличивается на 150—300%, остаточная деформация снижается на 30—40%, а сопротивление истиранию (по Пико) возрастает на 55—70%. Таким образом, с помощью силановых аппретов можно повысить механические свойства, которые характерны для композитов, содержащих несажевые наполнители. Такие композиты используют для изготовления целого ряда транспортных средств и механизмов.  [c.175]

Термопластичные эластомеры представляют собой высокомолекулярные линейные цепи с точкой стеклования значительно ниже комнатной температуры. В этом состоянии они растворимы ь органических растворителях и текут, если подвергаются давлению и. нагреву. Они застывают при удалении растворителя и при охлаждении. Термопластичные каучуки, в том числе блоксополиме-ры, содержащие эластомерные участки, имеют много общих свойств с каучуками, вулканизуемыми при комнатной температуре, но в отличие от них способны растворяться и плавиться.  [c.219]


Адгезионное взаимодействие термопластичных эластомеров с олигомерными грунтами, модифицированными силанами, по-видимому, состоит в частичной диффузии смолы в каучук, реагирующей с силаном. Специфической способностью к модификации в данном случае обладают аминосодержащие силаны другие же силаны, указанные в табл. 1, способствуют улучшению адгезионных свойств реакционноспособных смол, но неэффективны как добавки к промоторам адгезии термопластичных каучуков. Поскольку модифицированные силанами смолы эффективны в качестве грунтовок с термопластичными каучуками и неэффективны с термопластичными смолами, адгезионное соединение с поверхностью минерального наполнителя возможно только при наличии способ-  [c.221]

Натуральный каучук. Натуральный каучук обладает наибольшей среди испытанных до сих пор эластомеров радиационной стойкостью. Облучение вызывает сшивание натурального каучука. Упругие свойства ухудшаются, а твердость увеличивается. То же самое происходит при перевул-канизации. При длительной вулканизации жесткость натурального каучука становится сравнимой с жесткостью стекла. Зисман и Бопп [90] обнаружили, что аналогичные результаты получаются и при длительном облучении.  [c.77]

Полиуретановый каучук. Исследования Харрингтона [46] указывают, что эти эластомеры способны удовлетворительно работать по крайней мере до дозы 8,7-10 эрг г. Полиуретановые эластомеры не изменяются при облучении до 8,7-10 эрг г, а повреждение на 25% происходит примерно при дозе 4,3-10 эрг г. Наиболее интересным свойством является твердость, которая относительно слабо изменяется даже при дозе  [c.77]

Механические свойства натурального, бутадиенстирольного (SBR) и попибутадиенового эластомеров до и после облучения [39]  [c.81]

Рис. 2.6. Влияние содержания газовой сажи на радиационно-индуцированное изменение физических свойств бутадиенакрилонитрильного (67 30) эластомера [49] Рис. 2.6. Влияние содержания <a href="/info/314195">газовой сажи</a> на радиационно-индуцированное изменение <a href="/info/27383">физических свойств</a> бутадиенакрилонитрильного (67 30) эластомера [49]
Изменение свойств эластомера Вайтон А, облученного на воздухе, в аргоне и в масле MIL-L-7808 при 204° С излучением Сов [81 j  [c.91]

Силиконовые смолы вообш,е имеют большую радиационную стойкость, чем силиконовые эластомеры. Основные диэлектрические свойства нерастворимой силиконовой смолы не изменяются при у-облучении до дозы 10 эрг/г [30]. Такие дозы, кроме того, не вызывают значительных изменений физической целостности и прочности этого материала. Хотя радиационная стойкость этого материала типична для большинства силиконовых смол, было обнаружено значительное ухудшение диэлектрических свойств одной силиконовой смеси при облучении. Эти свойства, однако, в значительной степени восстанавливаются при последующей высокотемпературной выдержке.  [c.99]

Эластомеры, каучук, резина Потускнение поверхности, слизистые пятна, пигментация, спеицфический запах сетка мелких трещин с поверхностным налетом темного цвета налет (порошкообразного и войлочного) мицелия грибов, визуально заметного снижение герметизирующих свойств уплотнительных материалов снижение диэлектрических свойств электроизоляционных материалов набухание и изменение формы деталей Бактерии, грибы, актиномице-ты  [c.22]

Для защиты химического оборудования применяют два типа полимерных покрытий — пленочные и листовые. Эти покрытия могут быть получены на основе эластомеров, термореактивных и термопластичных полимеров. Листовые покрытия часто послойно сочетают в конструкции защиты слои различных термопластов, приклеенных с помощью термореактивных или эластомерных клеев. Используют также неадгезированные листовые покрытия при плакировании труб и в качестве вкладышей для защиты аппаратов. Для каждого типа покрытия необходимо устанавливать свое предельное состояние с учетом эксплуатационных свойств.  [c.44]


Смотреть страницы где упоминается термин Эластомеров свойства : [c.435]    [c.305]    [c.141]    [c.143]    [c.167]    [c.168]    [c.169]    [c.169]    [c.175]    [c.175]    [c.176]    [c.177]    [c.177]    [c.177]    [c.177]    [c.51]    [c.86]    [c.87]    [c.90]    [c.91]    [c.85]    [c.130]   
Защита от коррозии на стадии проектирования (1980) -- [ c.86 , c.88 ]



ПОИСК



Механические свойства полимеров. Эластомеры

Упругие свойства эластомеров

Эластомер

Эластомеры 223 — Состав, назначение, физнко-механические свойства



© 2025 Mash-xxl.info Реклама на сайте