Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая изоляция

Муфта состоит из двух чугунных полумуфт 1, в отверстиях которых закреплены стальные пальцы с надетыми на них кольцами и резиновыми гофрированными втулками 2. Металлический контакт полумуфт отсутствует, что обеспечивает плавную работу муфты и электрическую изоляцию валов.  [c.249]

В большинстве случаев практики применяются пассивные диэлектрики (электрическая изоляция, диэлектрические волноводы, электрические конденсаторы). В последнее время широкое распространение получили активные (управляемые) диэлектрики, резко изменяющие свои свойства под действием внешних (управляющих) факторов (сегнетоэлектрики, пьезоэлектрики, электреты и др.).  [c.545]


Развитие электроэнергетики и электромашиностроения связано с применением широкого ассортимента электроизоляционных материалов и изделий. Условия работы электрической изоляции по мере развития науки и техники все более усложняются, а требования к ней повышаются. В связи с этим возрастает роль испытаний электроизоляционных материалов и изделий, имеющих своей главной задачей определение соответствия свойств материала требованиям стандарта или технических условий.  [c.4]

Напряжение, приложенное к электрической изоляции, должно быть значительно ниже того значения, при котором электроизоляционный материал разрушается. Разрушение может происходить в результате сквозного электрического разряда через материал это явление называют электрическим пробоем, а минимальное напряжение, вызывающее электрический пробой,— пробивным напряжением / р, В некоторых случаях при напряжении, более низком, нежели Д р, начинается поверхностный электрический разряд, ие распространяющийся на значительную глубину материала такое явление называется поверхностным пробоем. Напряжение,  [c.95]

При измерении электрических характеристик образца в термостате необходимо обеспечить высокий уровень электрической изоляции вводов сквозь стенку термостата, так как с повышением температуры сопротивление изоляции падает. Целесообразно выпол-  [c.137]

Благодаря неизбежному увлажнению, окислению, загрязнению и т. п. поверхностных слоев электрической изоляции у твердых диэлектриков создается заметная поверхностная электропроводность, поэтому твердый диэлектрик характеризуется значением удельного поверхностного сопротивления р,.  [c.103]

Вольт-амперная характеристика образца диэлектрика (или электрической изоляции), линейная при обычных напряжениях U, отклоняется от линейной с приближением U к (рис.4.19), а в момент пробоя ток через диэлектрик резко возрастает, так что dl/dU- . В месте пробоя возникает искра или электрическая дуга. Вследствие образования плазменного сильно проводящего канала пробоя между электродами образец оказывается короткозамкнутым, и напряжение на нем падает,несмотря на рост тока (рис. 4.19 ).  [c.115]

Номинальное напряжение электрической изоляции должно быть меньше пробивного напряжения. Величину, равную отношению пробивного  [c.115]

Продолжительное воздействие электрического поля высокой напряженности приводит к необратимым процессам в диэлектрике, в результате которых его пробивное напряжение снижается, т.е. происходит электрическое старение изоляции. Вследствие такого старения срок службы изоляции ограничен. Кривую зависимости 1/ от времени приложения напряжения называют кривой жизни электрической изоляции.  [c.116]


Поскольку значение длительно допускаемой рабочей температуры электрической изоляции часто играет первостепенную роль на практике, электроизоляционные материалы и их комбинации (электроизоляционные системы электрических машин, аппаратов) часто относят к тем или иным классам нагревостойкости.  [c.127]

Газообразные диэлектрики. Среди газообразных диэлектриков прежде всего должен быть упомянут воздух, который в силу своей всеобщей распространенности, даже помимо нашей воли, часто входит в состав электрических устройств и играет в них роль электрической изоляции.  [c.127]

Наибольшее значение в электрической изоляции имеют синтетические смолы полимеризационные и конденсационные. Общим недостатком конденсационных смол является то, что при их отвержении происходит выделение воды или других низкомолекулярных веществ, остатки которых могут ухудшить электроизоляционные свойства смолы. Кроме того, молекулы конденсационных смол, как правило, содержат полярные группы, что повышает их тангенс угла диэлектрических потерь и гигроскопичность полимеризационные же смолы могут быть и неполярными (например, полимеры углеводородного состава, политетрафторэтилен).  [c.132]

Если по конструктивным соображениям контакт разнородных металлов неизбежен, то для устранения или уменьшения контактной коррозии необходимо подобрать совместимые металлы или осуществить полную электрическую изоляцию металлов друг от друга. В некоторых случаях изоляцию осуществить невозможно. Тогда желательно увеличить расстояние между неодинаковыми металлами в проводящей среде или обеспечить возможность замены анодных деталей, или изготавливать их с припуском. Контактную коррозию можно устранить нанесением эффективных покрытий, особенно на катодную поверхность. В случае нанесения металлических покрытий металл покрытия и основной металл должны быть совместимыми.  [c.203]

Мероприятия по защите от контактной коррозии. Если сочетания разнородных металлов неизбежны, то уменьшить или устранить контактную коррозию можно подбором совместимых металлов или полной электрической изоляцией одного металла от другого выбором оптимальных площадей анода и катода увеличением расстояния между неодинаковыми металлами в проводящей среде заменой анодных деталей или изготовлением их большей толщины нанесением эффективных непористых покрытий, в особенности на катодные поверхности контактных пар использованием контактной коррозии в ее полезной форме для катодной защиты деталей, которым угрожает разрушение от коррозии, а также следует избегать размещения гальванопар из разнородных металлов в пористых, поглощающих влагу материалах и электропроводных покрытий, если они несовместимы с сопряженным металлом.  [c.10]

В эксплуатации электрической изоляции вредное влияние оказывает повышенная влажность окружающей среды. Влага, проникая в изоляцию, ухудшает ее электроизоляционные свойства и может быть причиной выхода из строя. Степень влияния влажности окружаю-ш,ей среды на изоляцию зависит от гигроскопичности последней.  [c.110]

Электрическая изоляция ферромагнитных частиц производится жидким стеклом, различными смолами, например полистиролом, фенолформальдегидной смолой или другими связующими. Размеры ферромагнитных частиц составляют d = 10 — 10 см.  [c.99]

Если пробой электрической изоляции происходит в однородном электрическом поле, то U p/h, где р — электрическая  [c.166]

Теплопроводность определяет процесс отвода теплоты от нагретых проводников и магнитопроводов через слой электрической изоляции, а также и отвод теплоты из толщи электрической изоляции, нагретой за счет диэлектрических потерь. Количественно теплопроводность характеризуется коэффициентом теплопроводности Я, [Вт/( - К) или Вт/(м- С), который равен количеству теплоты.  [c.186]

Нагревостойкость электрической изоляции определяют по изменениям ее электрической прочности, тангенсу угла диэлектрических потерь, потере массы, механической прочности, а также других параметров при выдержке при повышенных по сравнению с рабочей температурах. Например, при температуре размягчения сильно снижается механическая прочность диэлектрика и деформация изделий увеличивается до опасных пределов и они выходят из строя.  [c.189]


Кроме воздуха в качестве электрической изоляции широко используют двух- и трехатомные газы — азот, водород, углекислый газ. Электрические прочности этих газов при нормальных условиях мало отличаются друг от друга и могут с достаточной точностью приниматься равными прочности воздуха. В табл. 6.1 приведены отношения электрической прочности некоторых газов, включая и высокопрочные пр г- < электрической прочности воздуха р в. которая принята за единицу. В этой же таблице даны точки кипения газов при нормальном давлении.  [c.193]

Жидкие диэлектрики представляют собой электроизоляционные жидкости, используемые в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. Применение электроизоляционных жидкостей позволяет обеспечить надежную и длительную работу электрической изоляции, находящихся под напряжением элементов конструкции, и отводить от них теплоту, выделяющуюся при работе.  [c.194]

Новолачные смолы применяются для производства лаков и пресс-порошков для изготовления электрической изоляции, причем процесс перехода линейного полимера в пространственный осуществляется в прессах при изготовлении изделий после смешения смолы с уротропином.  [c.211]

Высокая эластичность каучука обусловлена тем, что его моле-лекулы имеют зигзагообразную, шарнирную форму. Под действием растягивающих усилий ( юрма цепочки каучука приближается к прямолинейной, при этом получаются рентгенограммы, характерные для кристаллических тел, имеющих упорядоченное расположение молекул в пространстве. В нерастянутом состоянии каучук имеет свойства аморфных тел. Чистый натуральный каучук для изготовления электрической изоляции не применяется, так как он и его растворители имеют малую стойкость к действию как повышенных, так и пониженных температур. Эти недостатки устраняются после проведения процесса вулканизации, т. е. нагрева после введения в каучук серы. При вулканизации двойные связи некоторых цепочечных молекул разрываются и сшивают цепочки молекул через атомы  [c.220]

Слюды представляют собой группу материалов, относяш,ихся к водным алюмосиликатам с ярко выраженной слоистой структурой, которая обусловливает высокую анизотропию свойств, т. е. неодинаковость физико-механических и электрических характеристик в направлении вдоль и поперек слоев. В качестве электрической изоляции в настоящее время применяют два вида минеральных слюд мусковит и флогопит.  [c.231]

Экспериментальная установка. В рассматриваемой работе исследуется кривая кипения, охватывающая все режимы кипения. Проведение опытов с прямым и обратным переходом одного режима в другой позволяет установить явление, носящее название гистерезиса кипения. Процесс кипения осуществляется на поверхности тонкостенной обогреваемой трубки 2, находящейся внутри металлического сосуда 1, заполненного хладоном (рис. 4.15). Опытная трубка, выполненная из стали 1X13 диаметром 1,52 мм и длиной 145 мм, расположена в сосуде горизонтально. Обогрев ее осуществляется непосредственным пропусканием электрического тока. Одним из токоподводов служит медная шина, припаянная к торцу опытной трубки. При этом приняты меры, обеспечивающие герметичность и электрическую изоляцию токоподвода на выходе из сосуда.  [c.180]

Под влиянием колебаний температуры в достаточно широких пределах характеристики электроизоляционных материалов и изделий претерпевают существенные изменения, ставящие под сомнение возможность использования материа.пов. Практически важные пока.затели электрической изоляции с повышением температуры в большинстве случаев ухудшаются. Поэтому исключительргос значение приобретает способность материала выдерживать повышен-ную температуру без существенного уменьшения эксплуатационной надежности иными словами, исключительно важен вопрос о наивысшей допустимой рабочей температуре изоляции. К тепловым характеристикам относятся удельная теплопроводность, температуры размягчения и воспламенения материалов, пагревостойкость, стойкость к термоударам, холодостойкость.  [c.164]

В твердых диэлектриках наряду с объемным возможен и поверхностный пробой, т. е. пробой в жидком или газообразном диэлектрике, прилегающем к поверхности твердой изоляции. Так как Е р жидкостей и особенно газов ниже Е р твердых диэлектриков, а нормальная составляющая напряженности электрического поля непрерывна на границе раздела, то при одинаковом расстоянии между электродами в объеме и на поверхности пробой в первую очередь будет происходить по поверхности твердого диэлектрика. Чтобы не допустить поверхностный пробой, необходимо удлинить возможный путь разряда по поверхности. Поэтому поверхность изоляторов делают гофрированной, а в конденсаторах оставляют неметализированные закраины диэлектрика. Поверхностное 1/ р также повышают путем герметизации поверхности электрической изоляции лаками, компаундами, жидкими диэлектриками с высокой электрической прочностью.  [c.126]

Диэлектрические материалы имеют чрезвычайно важное значение для электротехники. К ним принадлежат электроизоляционные материалы они используются для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга части, находящиеся под различными электрическими потенциалами. Назначение э.тектрической изо.ляции — нс допускать про,хождсни.я э.лектричсского тока по каким-либо нежелательным путям, помимо тех, которые предусмотрены электрической схемой устройства. Очевидно, что никакое, даже самое простое, электрическое устройство не может быть выполнено без использования электроизоляционных материалов.  [c.126]

На недостаточно химостойкунэ изоляцию разрушающее воздействие оказывает агрессивность окружающей среды наличие в ней паров кислот, сернистых соединений, аммиака и других химически активных соединений. В высоковольтных конструкциях под влиянием очагов ионизации воздуха (короны) на изоляцию воздействуют образующиеся при этом агрессивные соединения. Для длительной работы в таких условиях изоляция должна быть короностойкой. Сказанное свидетельствует о том, что для правильного выбора материалов электрической изоляции нельзя ограничиваться значением из свойств, изученных на образцах в исходном состоянии. Требуется достаточно полное исследование их поведения в определенных изоляционных конструкциях с учетом возможных эксплуатационных воздействий.  [c.112]


Во многих д.чэлектриках, используемых в электрической изоляции, величина р сильно зависит от их увлажнения. Даже малое количество влаги, поглощенное гигроскопическим образом, может существенно уменьшить его сопротивление. Молекулы воды хорошо диссоциируют на ионы, в воде растворяются частицы примесей, обычно содержащихся в технических диэлектриках солей, остатков ка гализагоров, кислот, щелочей и других трудно устранимых из материала ионогенных веществ. Влага с растворенными ионоген-иыми примесями проникает в поры и микротрещины, впитывается капиллярами, распределяется по границам раздела в многокомпонентном диэлектрике. Количество поглощенной изоляцией влаги. 1ЙВИСИТ от влажности окружающего воздуха и времени выдержки -образца во влажной атмосфере или в воде, если изоляция работает в контакте с водой. Процесс уменьшения Pt, изоляции имеет обратимый характер. При высушивании поглощенная влага удаляется и р,, возрастает. Для предотвращения увлажнения изоляции поверхность гигроскопичных материалов защищается не смачиваемыми водой водостойкими материалами, препятствующими проникновению влаги. Например, пористые электрокерамические материалы покрываются глазурью пористые диэлектрики пропитываются жидкими или твердеющими компонентами, которые плохо увлажняются.  [c.144]

Для жидких и аморфных вязких материалов (смол, компаундов) важным параметром является вязкость. Вязкость свойственна текучим телам, где имеет место сопротиЬление перемещению одной части (одного слоя) тела относительно другой. Это сопротивление характеризуется динамической вязкостью (Па-с) и кинематической вязкостью (м /с), равной отношению динамической вязкости к плотности материала. На практике пользуются условной вязкостью (ВУ), которая связана с динамической и кинематической эмпирическими соотношениями. Условная вязкость измеряется с помощью вискозиметров разных типов. С помощью капиллярных или универсальных вискозиметров ВУ измеряется,по времени истечения заданного объема жидкости через капилляр или сопло заданного диаметра. В ротационных вискозиметрах испытуемая жидкость загружается в пространство между коаксиальными цилиндрами, один из которых неподвижный, а другой вращается. ВУ определяется по затрате мощности на вращение цилиндра. Вязкость определяет электрические свойства электроизоляционных материалов и такие технологические процессы производства электрической изоляции, как пропитка твердых материалов лаками, компаундами, прессование материалов и изделий из них. Вязкость минерального масла определяет конвекционный теплоотвод от нагретых частей в окружающую среду в масляных трансформаторах, выключателях и других устройствах.  [c.189]

В процессе эксплуатации материалы и изделия подвергаются воз-дейетвмо различных старящих их факторов. В первую очередь к ним относятся нагрев и электрическое напряжение. Одновременно могут воздействовать влажность, химически активные вещества, радиация, механические нагрузки, в том числе вибрационные, глубокое охлаждение и целый ряд других. Способность электрической изоляции без повреждения и без недопустимого ухудшения практически важных для нее свойств выдерживать действие одного или нескольких факторов в течение времени, сравнимого со сроком эксплуатации, определяет ее стойкость к воздействию таких факторов.  [c.189]

Наиболее важные для практического применения трансформаторного масла свойства нормированы ГОСТ 982—80. Из этих характеристик необходимо знать кинематическую вязкость при температуре 20 и 50 С, так как при увеличении вязкости сверх допустимых пределов хуже отводится теплота от обмоток и магнитопро-вода транс( рматора, что может привести к сокращению срока службы электрической изоляции. Стандартом нормировано также так называемое кислотное число — количество граммов КОН, которым можно полностью нейтрализовать все кислые продукты, содержащие в 1 кг масла. Этот показатель важен для учета старения масла в процессе его эксплуатации и для разных марок масла не должен превышать значений 0,03—0,1 г КОН на 1 кг. Для расчета расширителей трансформаторов, в которые переходит часть масла из бака трансформатора при повышении температуры, важно также учитывать и плотность масла, которая составляет 0,85—0,9 мг/м , и температурный коэффициент объемного расширения, имеющий  [c.195]

Основные определения и свойства полимеров. Для изготовления электрической изоляции используют большое число материалов, относящихся к группе попимеров. Полимеры — высокомолекулярные соединения. Они имеют большую молекулярную массу. Молекулы полимеров, называемые макромолекулами, состоят из больпюго числа многократно повторяющихся структурных группировок (элементарных звеньев), соединенных в цепи химическими связями. Например, в молекуле поливинилхлорида  [c.201]

Канифоль — хрупкая смола, получаемая из смолы (жив1 -цы) хвойных деревьев. Она растворяется в спирте, бензине, бензоле, нефтяных и растительных маслах и в других растворителях, в воде нерастворима. По диэлектрическим свойствам канифоль может быть отнесена к слабополярным диэлектрикам. Применяется для изготовления лаков и компаундов, используемых в электрической изоляции, добавляется к нефтяному маслу при пропитке бумажной изоляции силовых кабелей, в большом количестве применяется как составная часть многих электроизоляционных смол, в частности фенолоформальдегидных и полиэфирных.  [c.205]

ПТФЭ применяют в радиоэлектронике, электротехнике для изготовления электрической изоляции проводов, кабелей, конденсаторов, трансформаторов, работающих при высоких и низких температурах или в агрессивных средах.  [c.208]

ПВХ хорошо совмещается с пластификаторами, которые улучшают его эластичность, но в то же время несколько ухудшают- диэлектрические свойства. В электротехнике жесткий материал, называемый винипластом, находит ограниченное применение. Для электрической изоляции, в частности, для кабельной изоляции, применяется пластифицированный ПВХ, называемый пластикатом. Обычна применяют такие пластификаторы, как дибутилфталат и трикрезилфосфат. Введение пластификатора не только улучшает эластичность ПВХ, но и повышает его морозостойкость. Введением специальных пластификаторов можно получить пластикаты, способные работать при —60 °С, однако следует учитывать, что при введении большого их количества резко возрастают потери пррводимо-сти.  [c.209]


Смотреть страницы где упоминается термин Электрическая изоляция : [c.194]    [c.114]    [c.114]    [c.115]    [c.125]    [c.201]    [c.289]    [c.195]    [c.56]    [c.133]    [c.145]    [c.191]    [c.201]    [c.207]   
Справочник по электрическим материалам Том 1 (1974) -- [ c.9 ]

Технология ремонта тепловозов (1983) -- [ c.0 ]



ПОИСК



Изоляция



© 2025 Mash-xxl.info Реклама на сайте