Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота скорости - Схемы

Ог). определяет точкой пересечения характеристики двигателя с моментом Ма скорость 0)2 для заданных аначений частоты (Bj и регулировочного параметра г. Устойчивость движения системы, возбуждаемой рассматриваемыми агрегатами, таким образом, определяется только в отношении скорости 0)2. т. е. в ней возможны лишь амплитудные срывы. Автономное задание частоты скоростью 0i привода распределителя исключает частотные срывы в системе, если между приводами не существует дополнительных связей. В роторных гидропульсаторах некоторых модификаций такая связь существует. Например, для агрегата по схеме, показанной на рис. 8, связь между приводами осуществляется в в виде момента (o)i, о) ) трения между золотником и ротором. В этой системе возможны как амплитудные, так и частотные срывы, поскольку режимы движения определяются уже двумя уравнениями баланса нагрузок, взаимосвязанными моментом трения  [c.187]


Скалярная форма записи совпадает с (233). Отсюда следует, что разностная доплеровская частота в дифференциальной схеме этого типа не зависит от геометрии падающего пучка и определяется только геометрией рассеянных пучков. Доплеровская частота пропорциональна проекции вектора скорости на разностный вектор, построенный на волновых векторах выделенных рассеянных пучков.  [c.287]

Очевидно, что для схемы, составленной только из радиационных теплообменников и трубопроводов, точное решение достигается уже на первом шаге итерации. Так же за один шаг выполняется решение системы уравнений для парогенератора с конвективными теплообменниками, если они соединены по прямоточной схеме. Итерационный процесс возникает при противоточной или смешанной схеме соединения теплообменников по газовому тракту, которая характерна для современных крупных парогенераторов. Однако общее число итераций обычно невелико, итерационный процесс сходится быстро, поскольку связи через газовый тракт относительно слабее связей теплообменников по паровому тракту. По мере возрастания частоты скорость сходимости итераций увеличивается, поскольку уменьшаются значения модулей передаточных функций по всем каналам.  [c.157]

Импульсная лампа вспыхивает всякий раз, когда на ионизирующий электрод подается импульс высокого напряжения от схемы формирования импульсов. Момент вспышки происходит всегда в такой момент, когда неуравновешенность находится в определенном месте. При правильной работе схемы компенсации фазовой погрешности указание положения неуравновешенного места не будет меняться при изменении частоты (скорости вращения ротора) в пределах полосы пропускания. Эта измерительная схема дает возможность избежать точной регулировки скорости вращения ротора во время балансировки.  [c.299]

Работа автогрейдера при полной мощности двигателя и скоростях, меньших 4 км/ч, недопустима из-за повышенного (более 20%) буксования движителей. Поэтому операции, связанные с расчисткой дорог целесообразно производить при промежуточных частотах вращения двигателя. Это указывает на рациональность использования системы автоматической стабилизации скорости цо схеме, изображенной на рис. 19,5. Наиболее целесообразно использование гидродинамической передачи с минимальными значениями Шх.х т. е. в качестве базового для автогрейдера следует выбирать трехколесный комплексный гидротрансформатор.  [c.135]


Если уставки частоты отдельных регуляторов скорости неодинаковы, то разница в уставках компенсируется действием сигнала схемы распределения, т. е. путем соответствующего перераспределения нагрузок между агрегатами. Зависимость величины рассогласования нагрузок от различия в величинах уставки частоты определяется статизмом схемы распределения по частоте (подробней см. приложение 2).  [c.26]

Для сопоставления выбраны кривые номинального крутящего момента Мк=[(п), придающие сопоставимые свойства машинам, на которых они установлены. Поскольку одинаковые значения Ми разных типов оборудования не будут соответствовать этому условию, то за 100% Мц выбрано его номинальное значение (при номинальной частоте вращения) при схеме Г-Д с индивидуальными генераторами для каждого рабочего двигателя. В этом случае номинальный крутящий момент при той же скорости для других видов привода выбран в соответствии с установившейся практикой при замене одного силового оборудования другим.  [c.180]

Несмотря на относительную сложность силовой схемы и системы управления, значительное содержание высших гармонических (нечетного порядка) в кривой выходного напряжения, преобразователи этого типа получили применение в электроприводе переменного тока с глубоким регулированием частоты (скорости), и в особенности в тяговом приводе [5, 7]. Несколько схем автономного инвертора этого типа, разработанных электротяговой лабораторией ЛИИЖТа, прошли лабораторные и эксплуатационные испытания на тепловозе и электроподвижном составе. За рубежом разработаны инверторы, также относящиеся к этому типу.  [c.28]

Рассмотрим построение структурной сетки и графика частоты вращения для коробки скоростей, кинематическая схема которой показана на рис. 10, а.  [c.30]

Рассмотрим построение структурной сетки и графика частот вращения для коробки скоростей, кинематическая схема которой показана на рис. 2.11, й. Для принятого конструктивного варианта привода возможны два варианта структурной формулы г = 6 = 3 (1) -2 (3) и 2 = 6 = 3 (2) -2 (1). В первом случае основной группой будет первая в конструктивном отношении группа передач, а первой переборной — вторая группа передач для второго случая — наоборот.  [c.33]

Структурная формула коробки скоростей зависит от числа ступеней частоты вращения шпинделя г=р1-р2-рз.. -Рк, где Рк — число ступеней в каждой группе передач между валами. Структурная формула (г= 12 ==2-3-2) коробки скоростей, кинематическая схема которой приведена на рис. 2.14, указывает на то, что коробка включает в себя три группы передач (р1 = =2 Ра=3 и рз==2). Цифрами обозначены числа зубьев колес, расположенных на /, //, /Я, V валах коробки скоростей.  [c.32]

Далее будут приведены онисания испытанных схем различных ФУ, удовлетворяю щих перечисленным требованиям Все ФУ совместимы информационно, электрически и конструктивно. Под информационной совместимостью подразумевается совместимость сигналов, несущих информацию (например, по номинальному диапазону частот, скорости  [c.12]

Для возбуждения и одновременно измерения резонанса используют искатель типа показанного на рис. 11.14, возбуждаемый непрерывно колеблющимся излучателем и, как известно, имеющий некоторое количество жидкости для акустического контакта. (На рисунке показана ламповая схема, потому что приборы, применявшиеся для этой цели, обычно еще были ламповыми). Частота при этой схеме изменяется вручную при помощи конденсатора С. Резонанс выявляется измерительным прибором 1а для анодного тока по увеличению отбора энергии. Прибор тарируют по пластинам с известной толщиной, имеющим такую же скорость звука в материале.  [c.284]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]


Задача 3.46. В напорную линию системы смазки двигателя внутреннего сгорания включена центрифуга, выполняющая роль фильтра тонкой очистки масла от абразивных и металлических частиц. Ротор центрифуги выполнен в виде полого цилиндра, к которому подводится масло под давлением ро = 0,5 МПа, как показано на схеме, а отводится через полую ось, снабженную отверстиями. Часть подводимого масла вытекает через два сопла, расположенные тангенциально так А—/4), что струи масла создают реактивный момент, вращающий ротор. Определить скорость истечения масла через сопла (относительно ротора) и реактивный момент при частоте вращения ротора я = 7000 об/мин. Диаметр отверстий сопл do = 2,5 мм [х = ф = 0,65 расстояние от оси отверстий до оси вращения ротора/ = 60 мм р =900 кг/м . Считать, что в роторе масло вращается с той же угловой скоростью, что и ротор.  [c.65]

Задача 6.45. На рисунке представлена упрощенная схема гидросистемы навесного оборудования трактора, состоящая из насоса /, предохранительного клапана 2, трех распределителей 3, основного гидроцилиндра 4, двух вспомогательных гидроцилиндров 5 и фильтра 6. Определить скорость движения поршней и мощность, потребляемую насосом, если его рабочий объем 1/=100 см частота вращения п = = 2000 об/мин объемный к. п. д. т)о = 0,92 при давлении р =  [c.132]

Выполняется расчет кинематических и основных геометрических параметров механизма (передаточных отношений, угловых скоростей, диаметров колес, размеров шкал, габаритов корпуса и т. д.) с учетом параметров, конструкции, размеров, мест расположения и способов присоединения комплектуемых (готовых покупных) изделий, связанных с механизмом (см. 2.9). Вычерчиваются лучшие варианты кинематических схем, на которых в условных обозначениях изображаются все звенья и кинематические пары механизма и указываются их взаимное расположение и связи с другими узлами прибора. Каждая кинематическая схема снабжается необходимыми сведениями, характеризующими механизм. На схеме указывается тип двигателя и частота вращения его вала, цена оборота и цена деления шкалы, передаточные отношения, числа зубьев и модули колес, степень их точности, вид сопряжения и другие данные (см. рис. 28.7).  [c.402]

Муфты фрикционные сцепные. В отличие от кулачковых обеспечивают плавное сцепление валов под нагрузкой на ходу при любой разности окружных скоростей. Все фрикционные муфты в зависимости от формы поверхности трения делятся на дисковые, конусные и цилиндрические. Наибольшее распространение имеют дисковые муфты (плоская поверхность трения). На рис. 17.14 показана схема простейшей дисковой муфты с одной парой поверхностей трения. Полумуфта I укреплена на валу неподвижно, а полумуфта 3 подвижна в осевом направлении. Между полумуфтами размещена фрикционная накладка 2. Для сцепления валов к подвижной полумуфте прикладывают силу нажатия F. Передача вращающего момента осуществляется силами трения между трущимися поверхностями деталей муфты. В процессе включения муфта пробуксовывает (поверхности трения муфты проскальзывают) и разгон ведомого вала происходит плавно, без удара. При установившемся движении пробуксовка отсутствует, муфта замыкается и оба вала вращаются с одинаковой частотой вращения. Фрикционная муфта регулируется на передачу максимального момента, безопасного для прочности деталей машины, т. е. муфта ограничивает  [c.347]

На рис. 62. а изображена схема одноступенчатой активной турбины Лаваля и показано изменение давления и скорости пара в ее проточной части. Пар начального давления ро адиабатно расширяется в сопловом аппарате 2 до pi, при этом скорость возрастает от q до i-На рабочих лопатках 3 происходит преобразование кинетической энергии пара в. механическую работу на валу турбины 5, вследствие чего скорость пара падает от с у до с2, а давление остается постоянным. Далее отработанный пар поступает в конденсатор. В этих турбинах применялись расширяющиеся сопла, в которых достигалась сверхзвуковая скорость истечения, что было связано с большими конструктивными и эксплуатационными трудностями, в частности с большой частотой вращения вала турбины (30000 об/мин). Чтобы снизить частоту  [c.301]

Черепковское излучение волны нелинейной поляризации, возбуждаемой дублетом квазимонохроматических волн. Чтобы выявить закономерности генерации разностных частот при различных схемах согласования фазовых скоростей, мы обратимся сначала к наглядной задаче о генерации разностной частоты (РЧ) дублетом монохроматических волн. lly Tb на вход нелинейной среды подается суперпозиция монохроматических полей вида  [c.131]

Б схеме на рис. 3.5, а нагрузки создаются мотором, крутящий момент которого заведомо превышает Мт испытуемого ФС. Из схемы видно, что ВД закреплен неподвижно на приемном валу и при включении ФС буксует с постоянной скоростью. В схеме на рис. 3.5, б нагрузки на ФС создаются электрическими или гидравлическими тормозами. Так сделан стенд фирмы Лайкок , содержащий ДВС, испытуемое ФС, коробку передач и гидротормоз. Принципиально не отличается схема, содержащая электродвигатель постоянного тока, испытуемое ФС и генератор. Однако в настоящее время наиболее распространены инерционные стенды, где нагрузка на ФС создается повышением или снижением частоты вращения инерционных масс (ИМ). В стенде на рис. 3,5 д используются оба способа создания нагрузок. По такой схеме выполнен стенд СИКС-1, впервые в СССР сделанный небольшой серией и хорошо зарекомендовавший себя в эксплуатации на ЯМЗ и во ВНИИАТИ. Здесь первое испытуемое ФС работает в режиме разгона ИМ (как на машине), а второе испытуемое ФС — в режиме тормо-  [c.243]


Рассмотрим, например, анализатор типа АГ-1, который служит для измерения амплитуды и фазы составляющих вибрации основной и двойной частоты вращения. Блок-схема прибора приведена на рис. 2-38. Источником опорного сигнала служит блок генераторов опорного напряжения, состоящий из ГОН-1 и ГОН-2. ГОН-1 соединяется с ротором непосредственно, а ГОН-2 — через редуктор с отношением 2 1. Таким образом, ротор ГОН-2 вращается с удвоенной угловой скоростью по отношению к испытуемому ротору. В качестве фазорегулятора используется сельсин типа СГСМ-1. Сигнал с ротора фазорегулятора через усилитель поступает на одну из обмоток ваттметра 1 . На его вторую обмотку подается через усилитель Уз полигармоническое напряжение от вибродатчика ВД, пропорциональное вибрации. Отклонение ваттметра в зависимости от включения ГОН-1 или ГОН-2 пропорционально амплитуде первой или второй гармонической составляющей вибрации  [c.93]

ПАРАЗИТНАЯ ЕМКОСТЬ — электрическая емкость, образованная соединит, проводниками и деталями схемы друг с другом и с корпусом прибора (напр., межэлектродные емкости электронной лампы, мснгвитковые емкости катушки индуктивности, емкости монтажа и т. п.). П. е. зависит от размеров и расположения проводников и иногда существенно влияет на работу приборов, нарушая фазовые соотношения, изменяя действующие значения токов и напряжений и пр. Напр., при и,змеренин напряжения высокой частоты ламповым вольтметром необходимо учитывать входную П. о. (5—50 пф), обусловленную емкостью проводов и входной емкостью электронной лампы. В широкополосном усилителе П. е., складывающаяся из межэлектродных емкостей ламп и емкости монтажа, ограничивает полосу пропускания усилителя в области высоких частот. Работа импульсных схем мультивибраторы, триггеры, блокинг-генераторы, спусковые схемы и др.) в большой степени зависит от П. е., ограничивающей скорость их срабатывания и мин. длительность генерируемых импульсов. Влияние П. е. особенно существенно при работе с импульсами короче 10—1 мксек или в области частот 0,1—1 Мгц (при повышении частоты емкостное сопротивление, вносимое П. е., уменьшается). Для уменьшения П. е. применяют малогабаритные радиодетали, а монтаж схемы производят короткими проводниками. В нек-рых случаях влияние П. е. может  [c.583]

Управление электродвигателями переменного тока можно осуществлять с помощью большинства методов, применяемых в системах постоянного тока, а также и некоторых других. Реостатное управление осуществляется с помощью сопротивлений, включенных последовательно в цепь обмоток статора или ротора. В последнем случае получается довольно эффективное управление в ограниченном диапазоне крутящего момента электродвигателя. Скоростью электродвигателя переменного тока можно управлять путем изменения частоты напряжения питания. Схемы подобного управления обеспечивают точное регулирование, но очень дйроги, так как требуют применения генератора переменной частоты. Самым распространенным методом управления электродвигателями переменного тока считается метод с использованием двухфазных электродвигателей, когда питание в одну из обмоток двигателя подается от сети, а в другую — от управляющего устройства, например от усилителя мощности. Системы с двухфазными электродвигателями очень дороги, особенно при больших выходных мощно-  [c.121]

Центровые вращатели могут быть вертикальными, наклонными и горизонтальными. Вертикальные вращатели предназначены для установки и поворота свариваемого изделия вокруг вертикальной оси, а также для вращения вокруг нее со сварочной скоростью. Вертикальный вращатель представляет собой манипулятор без механизмов наклона и подъема стола. Они изготовляются двух типов со сварочной или "с маршевой скоростью. Конструктивная схема вертикальных вращателей — карусельная. Основные узлы привода и исполнительных органов вертикальных вращателей и манипуляторов идентичны. Вращатель имеет привод вращения, шпиндель с планшайбой и станину. Принципиальные конструктивные и электрические схемы вертикальных вращателей совпадают с аналогичными схемами манипу.тяторов. Вращатели обеспечивают работу при той же кратности диапазона регулирования скоростей сварки и частоты вращения, что и аналогичные манипуляторы.  [c.93]

Блок-схема модуля управления роботом представлена на рис. 82. Модуль подключается к каналу посредством унифицированной интерфейсной карты ИК. Для управления динамикой приводов робота используется блок регулировки скоростей БРС, представляющий собой управляемый делитель частоты, выполненый по схеме кругового разностного интерполятора. В БРС записывается код длины очередного перемещения манипуляторов робота. БРС  [c.201]

На рис. 6.19 показана кинематическая схема вертикально-фрезерного станка с ЧПУ модели 6Р13ФЗ. Механизм главного движения станка представляет собой обычную коробку скоростей, в которой 18 частот вращений шпинделя получают переключением двух тронных и одного двойного блока 19—22—16 37—46—26 и 82—19). Источником движения служит электродвигатель /VIj (N = 7,5 кВт, п = 1450 об/мин). Диапазон частот вращення шпинделя 40— 2000 об/мин.  [c.292]

Электроконтактные регуляторы применяются в двигателях малой мощности. На рис. 31.13 показан электроконтактный регулятор вибрационного действия. В момент включения двигателя ток проходит через замкнутые контакты 3 регу-лятора и подается в цепь питания двигателя. При увеличении частоты вращения сила инерции груза 2 преодолевает силы сопротивления пружин / и 4, отклоняет груз 2 и размыкает контакты 3. Частота вращения якоря уменьшается, вследствие чего контакты вновь замыкаются, и процесс повторяется. Непрерывное замыкание и размыкание контактов дают возможность авто.матически поддерживать угловую скорость Ыср, близкую к постоянной. Изменение задаваемой угловой скорости в этих регуляторах осуществляется подбором элементов электрической схемы.  [c.400]

Схема установки с качающейся рамой (люлькой) показана на рис. 32.4. Люлька 2 качается на шарнире О, находящемся на основании 1. Пружина 5 заменяет вторую опору люльки 2. Балансируемую деталь 4 устанавливают в подшипниках 3 люльки. Для размещения уравновешивающих масс выбираем плоскости П П2. Деталь устанавливают в люльке так, чтобы одна из этих плоскостей проходила через шарнир О. Деталь приводится во вращение от специального электродвигателя и разгоняется до большой угловой скорости 0J. После этого двигатель отключается и деталь начинает выбег. При некоторой частоте вращения, которую называют критической, колебания люльки происходят с наибольшей амплитудой, пропорциональной значению статического момента неуравновешенной массы till в плоскости FI.  [c.404]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]


Для анализа структурной схемы лазерного доплеровского измерителя скорости (ЛДИС) рассмотрим случай отражения назад света лазера с частотой испускаемого излучения vo от движущейся навстречу падающей волне частицы. В этом случае доплеровский сдвиг частоты (ДСЧ) будет иметь максимальное значение и согласно выражению (11.13) запишется следующим образом  [c.229]

Если кинематические схемы выполнены без соблюдения единого масштаба, то для кинематического расчета могут быть указаны длины каждого звена и расстояния между характерными неподвижными точками. Входное звено на рис. 1.2, а представлено ползуном С, а выходное - коромыслом ОА. Для входных звеньев на кинематических схемах ука-зьшают частоту вращения и, об/мин, или угловую скорость  [c.13]

В турбине Лаваля при снижении частоты вращения вала при j = = onst растет абсолютная скорость выхода пара с рабочих лопаток с2 И, как следствие этого, к. п. д. турбины быстро падает. Для уменьшения выходных потерь со скоростью С2 и понижения частоты вращения вала Кертис предложил турбину с двумя ступенями скорости. На рис. 6.2,6 представлены схема этой турбины и графики изменения абсолютной скорости и давления пара в проточной части турбины. Пар с начальными параметрами ро и То расширяется до конечного давления pi в соплах 2, а на рабочих лопатках 3 и 3 происходит преобразование кинетической энергии движущегося потока в механическую работу на валу 5 турбины. Закрепленные на диске 4 турбины два ряда рабочих лопаток 3 и 3 разделены неподвижными направляющими лопатками 2, которые крепятся к корпусу I турбины. В первом ряду рабочих лопаток 3 скорость потока падает от i до j, после чего пар поступает на неподвижные лопатки 2, где происходит лишь изменение направления его движения, однако вследствие трения пара о стенки канала скорость парового потока падает от с2 до с. Со скоростью с пар поступает на второй ряд рабочих лопаток 3 и снова повторяется идентичный процесс. Поскольку преобразование кинетической энергии в механическую работу на валу турбины Кертиса происходит в двух рядах рабочих лопаток, максимальное значение г ол получается при меньших отношениях k/ j, чем у одноступенчатой турбины. А это значит, что частота вращения вала турбины (колеса) Кертиса может быть снижена по сравнению с одноступенчатой турбиной. Анализ треугольников скоростей показывает, что оптимальный к. п. д. турбины Кертиса достигается при входной скорости пара t i вдвое большей, чем у одноступенчатой турбины. Это означает, что в турбине с двумя ступенями скорости может быть использовано большее теплопадение /loi, чем в одноступенчатой.  [c.302]

Пример. Требуется выбрать геометрические параметры винтовой пары электрифицированного домкрата, схема которого представлена на рис. 11.7. Электродвигатель через зубчатые передачи вращает винты / и /, которые упираются р. стойку 3 через упорные подшипники. Моментом трения в этих подшипниках можно пренебречь. Перекладина 2, нарезанные отверстия которой служат гайками, имеет только поступательное перемешение со скоростью и поднимает груз = 5-10 МН. Частота вращс ния каждого винта 1000 мин" .  [c.294]

Динамика механизмов с последовательно соединенными упругими звеньями. На рис. -67, а была показана схема зубчатого механизма, который можно рассматривать как последовательное соединение жестких звеньев (зубчатых колес, маховиков и т. п.), соединенных упругими элементами (упругими валами и муфтами). Такое соединение иногда называют цепной системой. Общее число степеней свободы цепной системы с упругими элементами равно сумме числа степеней свободы механизма с жесткими звеньями и числа упругих элементов. Если воспользоваться методом приведенных жесткостей, то можно уменьшить общее число степеней свободы. Например, число степеней свободы механизма, показанного на рис. 67, а, при трех упругих валах равно 4. Если при рассмотрении условий передачи сил от од1ГОго звена к смежному с ним пренебречь инерцией зубчатых колес, то можно выполнеть приведение последовательно соединенных жесткостей и рассматривать двухмассовую динамическую модель (см. рис. 67, 6), которая при постоянной скорости вала двигате-яя имеет одну колебательную степень свободы и, соответственно, одну собственную частоту. При анализе резонансных рел имов такое рассмотрение недопустимо, так как резонанс может наступить при других значениях собственных частот, число которых равно числу степеней свободы.  [c.243]

Для контроля протяженных объектов широкого сортамента (типоразмеров, марок материалов и т. д.) разработаны универсальные дефектоскопы тиров ВД-ЗОП,- ВД-31П. Универсальность обеспечивается применением четырех частот возбуждающего тока, использованием ВТП со сменными катушками ряда типоразмеров, наличием регулируемых фильтров, блока счетчиков общего числа прутков и числа дефектных прутков, а также осцил-лографнческого индикатора и скоростного самописца, предназначенного для выбора оптимальных режимов работы и документации процесса контроля. В дефектоскопах используются трансформаторные проходные ВТП с возбуждающей обмоткой, имеющей отношение длины к диаметру в пределах единицы, и двумя короткими измерительными обмотками, включенными в мостовую схему (см. рис. 61). При этом база значительно меньше единицы. Ввиду малой относительной длины возбуждающей обмотки необ-ходимо с помощью фазорегулятора уменьшать влияние поперечной вибрации детали (см. рис. 67, б), выбирая фазу опорного напряжения фазового детектора. Па выходе фазового детектора включен ряд перестраиваемых фильтров, с помощью которых в соответствии со скоростью контроля ослабляется влияние мешающих факторов, обусловленных изменением о и размеров объекта. Отфильтрованный сигнал поступает на пороговое устройство, соединенное с блоком автоматической сортировки и маркером. При ко ггроле ферромагнитных материалов влияние их структурной неоднородности уменьшают подмагничиванием постоянным магнитным полем.  [c.140]


Смотреть страницы где упоминается термин Частота скорости - Схемы : [c.57]    [c.298]    [c.95]    [c.272]    [c.325]    [c.286]    [c.62]    [c.401]    [c.111]    [c.378]    [c.393]    [c.18]    [c.124]    [c.20]    [c.214]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.439 ]



ПОИСК



Механические системы динамические с гасителем колебаний Колебания свободные — Частоты собственные обобщенных координат и скоростей 530, 531 — Схемы, особенности и перемещения



© 2025 Mash-xxl.info Реклама на сайте