Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности систем стабилизации

Наиболее трудоемкими и наименее надежными механизмами автоматизированных СНК, как правило, являются устройства сканирования. В процессе сканирования должен поддерживаться постоянный зазор между преобразователем, источником поля и контролируемым изделием. Движение преобразователя и контролируемого изделия относительно друг друга может быть поступательным, вращательным, сложным возвратно-поступательным и др. Особенностью систем сканирования СНК и диагностики является высокая точность их изготовления. Они могут быть электронными, электромеханическими, гидравлическими, пневматическими и др. Дополнительно к механическим устройствам стабилизации зазора применяют электронные измерительные устройства, которые сигнализируют о выходе зазора за пределы допустимых значений и регулируют коэффициент усиления измерительного тракта в функции величины зазора, под-  [c.36]


Авторы настоящей монографии поставили цель систематизировать ранее известные отдельные работы по системам управления и динамике КА, стабилизированных вращением, рассмотреть наиболее важные вопросы теории движения КА относительно его центра масс, классифицировать и дать анализ систем управления вращающихся спутников, которые уже нашли практическое применение за рубежом. Новизна вопроса привела к необходимости разработки основ теории линейных и нелинейных систем стабилизации угловой скорости собственного вращения и систем ориентации главной оси. Так как создание и вывод на орбиту КА с искусственной гравитацией вполне реально в недалеком будущем, то авторы сочли необходимым рассмотреть возможные перспективы и особенности использования вращающихся долговременных орбитальных станций с экипажем на борту.  [c.4]

Наиболее экономичным способом стабилизации углового положения КА является стабилизация вращением в заданном, ориентируемом положении и управление скоростью вращения. Настоящая книга посвящена вопросам аналитического анализа динамики КА, стабилизированного вращением, с учетом воздействия на него внешних факторов — аэродинамических сил, геомагнитного поля, особенностей конструкции, а также исследованию систем угловой стабилизации, ориентации и систем стабилизации угловой скорости собственного вращения. В книге представлены материалы по возможному использованию искусственных спутников Земли, стабилизированных вращением, и основные особенности деятельности экипажа в условиях искусственной гравитации. В предлагаемой книге предпринимается попытка  [c.5]

ГЛАВА 2. ПРИНЦИПЫ ПОСТРОЕНИЯ И ОСОБЕННОСТИ ПАССИВНЫХ СИСТЕМ СТАБИЛИЗАЦИИ  [c.24]

Результаты летных испытаний. Основные результаты практического использования гравитационных систем стабилизации получены от спутников серии Транзит [51] и летных испытаний магнитных шаровых демпферов [7] (рис. 23 и 24). И хотя эти полеты были весьма успешными, ограниченные цели и малые размеры этих спутников потребовали минимума приборного оборудования. По результатам этих полетов были оценены качественные характеристики систем стабилизации однако в будущем для получения более точных количественных оценок необходимы дополнительные данные от спутников с более сложными системами стабилизации. В последние пять лет интенсивно испытывались системы с гироскопическим стабилизирующим моментом, причем оборудование таких систем было более высокого качества. Данных о работе гравитационных систем стабилизации в этих полетах не имеется в силу специфических особенностей этих полетов, однако в ближайшем будущем необходимая информация будет, по-види--мому, опубликована,  [c.212]


Совершенно специфической является динамика систем гироскопической стабилизации, построенных по силовой схеме, где момент гироскопической реакции непосредственно используется для компенсации возмущающих моментов, действующих на стабилизируемый объект. Особенности синтеза систем стабилизации, связанные с особенностями их динамики, рассматриваются в последующих главах.  [c.39]

Изложенное в 5.1—5.4 относится к системам стабилизации с астатизмом первого порядка. Расчет систем стабилизации с астатизмом второго порядка имеет некоторые особенности.  [c.126]

Выполненный расчет может потребовать уточнений здесь сохраняют силу замечания, сделанные в 5.12. В частности, может оказаться необходимым учет взаимосвязей между осями подвеса платформы. Кроме двух видов взаимосвязей, указанных в 5.11, в стабилизаторе на поплавковых гироскопах может оказаться суш,ественной взаимосвязь систем стабилизации по каждой из осей через датчики угла прецессии. При отклонении платформы от заданного положения на угол а (см. рис. 8.1 и 8.2) относительно оси Оу сигнал ошибки снимается с датчика угла прецессии, ось которого направлена по оси Ох. При этом должен измеряться угол прецессии относительно инерциального пространства. В действительности же датчик измеряет угол между поплавком и корпусом гироскопа. Корпус жестко связан с платформой, поэтому измеренный угол будет отличаться от р на величину ошибки стабилизации платформы по оси Ох. Таким образом, система стабилизации по оси Оу получает ложный сигнал по ошибке вокруг оси Ох эта перекрестная связь осей может стать особенно заметной при малых углах прецессии. Последнее часто характерно для стабилизатора на поплавковых гироскопах. Взаимосвязь осей ЭТОГО вида рассмотрена, например, в [13].  [c.282]

ОСОБЕННОСТИ СИСТЕМ ДВУХСТУПЕНЧАТОЙ СТАБИЛИЗАЦИИ  [c.338]

Другая особенность систем разгрузки — необходимость учета контура системы стабилизации, имеющей свои исполнительные органы. Понятно, что такая необходимость отпадает, если система разгрузки работает не в основном режиме, а в режиме предварительного успокоения.  [c.97]

Задачей системы автоматического регулирования (САР) является автоматическое изменение по определенному закону тех или иных выходных параметров преобразователя в статических и динамических режимах. В частном случае САР стабилизирует какой-либо параметр при изменениях нагрузки и напряжения в питающей сети. Общая структурная схема при стабилизации приведена на рис. 1-32. Датчик Д выдает сигнал, пропорциональный величине выходного стабилизируемого параметра преобразователя П. В сравнивающем устройстве СР происходит сравнение величины сигнала, полученного от датчика, с заданным сигналом. В случае их неравенства на выходе СР появляется сигнал, пропорциональный разности. В усилителе У разность усиливается до необходимого уровня и подается на систему управления СУ преобразователем. СУ является исполнительным органом САР, она воздействует на регулируемый объект — преобразователь. Особенности систем управления преобразователями рассмотрены выше.  [c.42]

В послевоенный период теория автоматического регулирования формируется как самостоятельная научная дисциплина. Существенное влияние на ее развитие оказали результаты, полученные в смежных областях, особенно радиотехнике. Критерий Найквиста — Михайлова и критерий Михайлова были распространены на системы, описываемые дифференциальными уравнениями высокого порядка. Возможность использования экспериментально снятой амплитудно-фазовой характеристики устойчивой разомкнутой системы для определения устойчивости замкнутой системы делает частотные методы весьма распространенными на практике. В 1946 г. эти критерии были распространены на случаи нейтральных и неустойчивых разомкнутых систем. Теория устойчивости линеаризованных систем с сосредоточенными параметрами получила свое завершение в разработке теории Д-разбиения. В 1946 г. были исследованы закономерности расположения корней целых функций на комплексной плоскости, характеризующие устойчивость систем с распределенными параметрами (трубопроводы, длинные линии электропередач и т. д.) и с элементами с транспортным запаздыванием. На системы с запаздыванием был распространен метод частотных характеристик систем с сосредоточенными параметрами. В 1947 г. этот метод был распространен на один класс систем с распределенными параметрами. В связи с задачами стабилизации линейных систем в 1951 г. было  [c.248]


Дальнейшее развитие теории импульсных систем шло по пути разработки частотных методов анализа импульсных систем как при детерминированных, так и при случайных воздействиях. Развитые методы позволили установить особенности и свойства, специфичные для импульсных систем, а именно возможность стабилизации непрерывных систем с запаздыванием и неустойчивыми звеньями путем введения импульсного элемента, или ключа, осуществление в импульсных системах процессов конечной длительности (бесконечной степени устойчивости). Этот последний факт впоследствии лег в основу важного понятия управляемости общей теории управления.  [c.250]

Многолетняя эксплуатация систем централизованного автоматического контроля и регулирования электролизеров показала, что применение этих систем обеспечивает снижение на 1—1,5% расхода электрической энергии при производстве алюминия более равномерный режим работы электролизеров, особенно при отсутствии стабилизации тока значительное улучшение организации труда в электролизных корпусах. Расчеты показывают, что срок окупаемости капитальных вложений на создание таких систем составляет 2—3 года и зависит в основном от стоимости электрической энергии в районе применения.  [c.297]

Продольная и поперечная скорости вертолета на режиме висе-ния изменяются путем создания моментов по тангажу и крену относительно центра масс вертолета, что представляет собой более трудную задачу. Летчик, воздействуя на рычаги управления, непосредственно изменяет углы тангажа или крена, в результате чего возникают продольная или поперечная сила, а затем и желаемое изменение скорости вертолета. Между силами и моментами, порождаемыми управляющими воздействиями, обычно имеется существенная взаимосвязь, так что любое управляющее воздействие для создания нужного момента требует некоторых компенсирующих воздействий по другим осям. Вертолет без системы автоматического повышения устойчивости не обладает ни статической, ни динамической устойчивостью, особенно на режиме висения. Поэтому сам летчик должен осуществлять управляющие обратные связи для стабилизации вертолета, что требует от него постоянного внимания. Использование автоматических систем для улучшения характеристик устойчивости и управляемости вертолета всегда желательно, а для ряда его применений — существенно важно, но такие системы увеличивают стоимость и усложняют конструкцию вертолета.  [c.700]

В последнее время для управления ориентацией и скоростью вращения спутников на околоземных орбитах все более широкое применение получают активные магнитные системы, использующие магнитное поле Земли. Можно выделить следующие особенности этих систем. Основными функциями активных магнитных систем является стабилизация или коррекция углового положения спутника и его скорости собственного вращения. Вместе с этим они способны выполнять и второстепенные функции уменьшение начальной чрезмерно большой скорости закрутки предварительное успокоение переориентацию спутника из одного заданного положения в другое сканирование небесной сферы компенсацию магнитных возмущающих моментов стабилизацию по силовым линиям магнитного поля Земли демпфирование либраций и т. д.  [c.124]

Особенностью магнитных систем управления спутников, стабилизированных собственным вращением, является то, что работают они не непрерывно, а с некоторой скважностью, которая определяется не только временем накопления достаточной ошибки от возмущений, но и физическими свойствами магнитного поля Земли. Иногда система включается один раз за виток, иногда намного реже, причем в одних случаях работа происходит на определенных участках орбиты, где выполняются условия оптимального управления, а в других — на любом участке или на протяжении всего витка (или нескольких витков), если выполнение этих условий не требуется. Проведенные исследования [30] показали, что для каждой орбиты и всех фаз полета спутника с активной магнитной системой существуют четыре точки переключения. Условия переключения проверяются с помощью сигналов датчика напряженности магнитного поля Земли и солнечных датчиков. При этом соответственно переключается и магнитный диполь ориентации оси закрутки, и диполь стабилизации скорости собственного вращения спутника. Прерывистость работы активных магнитных систем ориентации положения спутника и его скорости закрутки обусловливается самой природой стабилизации собственным вращением, для которой характерна высокая устойчивость к воздействию как внешних, так и внутренних возмущающих моментов.  [c.125]

Вслед за резким подъемом наблюдается стабилизация величины э.д.с. электрохимических ячеек, особенно заметная при проведении эксперимента при 10° С. Значение концентрации щелочи при этом наиболее высоко у растворов щелочи, затем идут силикаты с модулями 1.3, 1.5,1.7, 1.9. Форма и продолжительность нахождения систем в состоянии, характерном для коллоидного структурообразования [21], составляют 10, 18, 20, 25, 66 час. для модулей О, 1.3, 1.5, 1.7, 1.9 соответственно. По-видимому, в течение этого времени закладываются и основы кристаллизационного твердения.  [c.59]

Проанализированы особенности рассматриваемых задач и методов, позволяющие глубже проникнуть в их сущность, понять законы функционирования частично устойчивых систем, механизмы возникновения и потери свойств частичной устойчивости. Показаны опасности при практическом использовании результатов теории устойчивости и стабилизации по части переменных.  [c.67]

Это позволяет провести частичную стабилизацию движения рассматриваемых систем по отношению к переменным, определяющим не только скорости, но и (как показывает более детальный анализ) ориентацию основного тела. Особенность такой частичной стабилизации в том, что связанные с телом массы берут на себя возмущения кинетического момента системы.  [c.177]

Как видно, вывод закона подобия из теории подобия и раз мерности более краток, чем из анализа полной системы уравнений. Это впечатление, однако, обманчиво, и оба приведенных вывода практически эквивалентны, так как при подборе систе-мы определяющих параметров мы неявно исходили из общей постановки задач, в частности, из вида уравнений и определяющих граничных условий. Например, для получения из общей-теории подобия и размерности принципа гиперзвуковой стабилизации нужно знать конкретные соотношения на ударной волне, исходя из которых, можно пренебречь давлением роо, энтальпией h или скоростью звука йоо невозмущенного потока для получения закона бинарного подобия необходимо знать структуру и особенности уравнений химической кинетики и т. д.  [c.121]


В настоящее время пассивные методы прочно вошли в арсенал технических средств, применяемых для стабилизации искусственных спутников. Эти методы, не требующие затрат рабочего тела и либо совсем не связанные с затратой энергии, либо требующие минимальных затрат, оказываются весьма эффективными, когда требуется поддерживать определенную ориентацию спутника в течение длительного периода времени и точность порядка нескольких градусов является достаточной. Системы стабилизации, основанные на использовании пассивных методов, обычно оказываются достаточно легкими как абсолютно, так и в долях веса спутника, что особенно существенно для небольших спутников, в том числе для спутников, предназначенных для проведения научных -исследований. Пассивные методы стабилизации весьма эффективны также на спутниках с большим временем активного существования, используемых для осуществления телепередач, телефонной и радиосвязи между континентами, на метеорологических спутниках. Увеличение точности, выход в диапазон высот от 500 км до суточных орбит, упрощение и повышение надежности, использование в пассивных системах стабилизации некоторых элементов активных систем приведет к дальнейшему расширению области применения пассивных методов.  [c.303]

Особенностью данной книги является то, что в ней не рассматривается теория собственно гироскопических устройств, которая разработана достаточно полно. Книга посвящена динамическому синтезу систем гироскопической стабилизации как систем автоматического управления.  [c.5]

В настоящее время методы определения структуры и параметров систем автоматического регулирования по предъявляемым к этим системам требованиям с точки зрения их точности в динамике разработаны достаточно полно. Однако эти методы, непосредственно применимые к таким системам регулирования, как следящие системы воспроизведения угла, нуждаются в некоторых изменениях для систем пространственной стабилизации в связи с особенностями их работы.  [c.38]

Стабилизация амплитуд колебаний при наличии режима разрывных кавитационных колебаний достаточно просто объясняется особенностями частотной характеристики трубопровода. Ранее было показано, что амплитуда колебаний давления жидкости в режиме разрывных кавитационных колебаний практически не зависит от амплитуды механических колебаний. Из этого следует, что рост амплитуды механических колебаний корпуса после потери устойчивости не будет сопровождаться возрастанием энергии, поступающей в систему в течение одного цикла колебаний, поскольку последняя пропорциональна амплитуде колебаний давления, в то вре-мя как энергия, рассеиваемая в конструкции, монотонно растет с  [c.198]

Важной особенностью рассмотренных пассивных систем стабилизации является их безынерционность запаздывание силового управления, формируемого обратной связью, относительно сигнала  [c.112]

Системы стабилизации угловой скорости с маховиками могут быть созданы на основе нелинейных законов управления. Техническая реализация таких систем возможна с применением надежных бесколлекторных электрических двигателей переменного тока. Основные теоретические положения нелинейных систем стабилизации угловой скорости с использованием реактивных сопел применимы и для нелинейных систем с маховиками. Однако некоторые особенности, связанные с наличием сил сопротивления в опорах маховика, могут привести к количественным и незначительным качественным изменениям этих положений.  [c.184]

Исследование реакции многосвязной системы на возмущающее воздействие N. САКСД представляет собой многосвязную систему стабилизации. Поэтому важнейшими показателями ее работы являются статическая ошибка, динамический провал и время переходного процесса прн действии возмущающего воздействия. Структурная схема системы при действии возмущения N показана на рис. 4. Существенной особенностью рассматриваемой системы является симметрия передаточных матриц В и (Н-[-М), а также то, что передаточные функции матрицы В отличаются только коэффициентами передачи. Последнее позволяет представить В в виде  [c.143]

Этап чернового шлифования включает в себя переходный процесс достижения заданной скорости съема. Без использования специальных методов этот процесс занимает значительное время, особенно в системах с низкой жесткостью. В связи с этим разработан рад методов, позволяющих сократить время переходного процесса, схематично показанных на рис. 1.16.34. Широко используется метод ступенчатого изменения подачи, при котором подача врезания в 4 - 5 раз превьппает рабочую подачу, что позволяет сократить время натяга упругой системы примерно до 90 % по сравнению с врезанием на рабочей подаче. Однако - эффект этого метода в значительной степени зависит от выбора точки переключения. В условиях вариации припуска раннее переключение снижает производительность, в то время как позднее переключение приводит к недопустимым силовым перегрузкам и снижению качества. В связи с этим распространение имеют методы с регистрацией точки касания круга с деталью по силовым или вибрационным параметрам. Применение устройств регистрации касания позволяет увеличить форсированную подачу и уменьшает время переходного процесса независимо от припуска на детали. Дальнейшее повышение эффективности ускоренного врезания связано с использованием систем стабилизации силовьк характеристик, датчик касания в которьгх является рабочим элементом. Система стабилизации снимает нежелательные переходные процессы, связанные с увеличением нагрузок в процессе ступенчатого переключения подачи.  [c.600]

Основное назначение магнитных систем стабилизации (МСС) — стабилизация по МПЗ с целью однозначной ориентации КА, снабженных гравитационными системами, перед выпуском гравитационных щтанг, а также с целью создания на КА подходящих условий для проведения различных научных экспериментов и облегчения привязки результатов этих экспериментов к определенному направлению в пространстве. Особенно полезна стабилизация по МПЗ при исследовании геофизических явле-  [c.124]

Эффекты второго типа связаны со способностью некоторых малых примесей влиять на образование упрочняющих выделений, изменяя кинетику их роста и превращений, а иногда и морфологию. Такие эффекты особенно существенны в сплавах серии 5000, где вероятна последовательность формирования второй фазы [123] (здесь р—интерметаллид Mg5Al8). Явных свидетельств пред-выделения, т. е. возникновения зон Гинье — Престона (ГП) перед образованием р не имеется. Эти сплавы легко получить в виде метастабильных твердых растворов А1 — Mg, особенно при сравнительно низких концентрациях магния (как в случае сплавов 5083 и 5456), поскольку выделение равновесной р-фазы протекает довольно медленно. Фаза р возникает в результате гетерогенного зародышеобразования, особенно вероятного на границах зерен. Фаза р формируется медленно и при этом стремится образовать сплошной слой. Очевидно, что такие р-слои, существенно анодные по отношению к матрице [128], могут вызывать сильную межкри-сталлитную коррозию (не обязательно КР). Как уже отмечалось, для других систем (и это справедливо такхге для рассматриваемых сплавов [2]). восприимчивость к КР иногда, но не всегда, коррелирует с межкристаллитной коррозией. Таким образом, увеличение содержания магния повышает нестабильность сплава (т. е. тенденцию образовывать р-фазу в процессе эксплуатации), поэтому были разработаны многочисленные методы обработки и легирования сплавов серии 5000 с целью их стабилизации и предотвращения формирования зернограничной р-фазы. Например, холодная деформация с последующим высоким отжигом в области а-ьр  [c.83]

Следовательно, форма и размеры пламенной поверхности определяются взаимодействием двух движений (пламени и потока), а устойчивость этой поверхности определяется процессом стабилизации (естественной или искусственной) корневой части конусообразной зоны горения. Целесообразность такого разграничения становится особенно очевидной при необходимости повысить интенсивность процесса горения, характеризуемую объемным теплонапряжением Q/V, или форсировку газогорелочного устройства, характеризуемую теилонапряже-нием сечения горелки Q/f. В этом случае важно иметь в виду, что предельные теплонапряжения Q/V п Q/F по-разному зависят от основных характеристик горючей смеси и конструктивных особенностей га-зогорелочных систем.  [c.53]


ОКУ) и другие элементы, назначение которых очевидно из их наименований. Штрихованные соединения между блоками соответствуют световым связям блоки, обведенные штриховыми линиями, включаются в зависимости от используемых методов модуляции (внутренней или внешней) и приема (прямое детектирование или супергетеродикное). Особенностями системы являются прежде всего диапазон рабочих длин волн и когерентность излучения. Эти особенности приводят к необходимости создания устройств точного нацеливания антенн передатчика и приемника, так как диаграммы направленности их могут определяться значениями нескольких дуговых секунд (при малых весах и габаритах антенных систем). Случай широкой диаграммы направленности антенны передатчика имеет место, когда сигнал ОКГ является сложным и состоит из большого числа типов колебаний (мод). Однако, даже если лазер передатчика работает на одном типе колебаний, часто необходимо иметь широкий луч, хотя бы для успешного решения задачи нацеливания (перехвата) и слежения за связным ретранслятором 1). В то же время узкие диаграммы направленности позволяют реализовать существенно большие дальности связи, однако и здесь возникают свои проблемы, связанные с обзором больших объемов пространства узкими лучами за короткие интервалы времени, и проблемы стабилизации направления луча. Создание прецизионных быстродействующих устройств нацеливания узких лучей, обеспечение одномодового режима работы ОКГ, разработка точных устройств сопровождения позволят полностью реализовать экстремальные характеристики направленности лазерных систем. В этом случае сечение луча может приблизительно совпадать с поверхностью апертуры приемной системы, поверхностью ретранслятора или цели кроме того, случай полного перекрытия целью сечения луча имеет место при посадке объекта на земную или лунную поверхность.  [c.17]

Управление в космическом пространстве существенно отличается от управления в земных условиях. Во-первых, условия, существующие в космосе, отличаются от земных наличием невесомости, интенсивной радиации, разрежения, близкого к абсолютному вакууму, и, следовательно, почти полным отсутствием естественного демпфирования. Эти факторы усложняют конструкщ1ю элементов системы ориентации и стабилизации и делают чрезвычайно трудоемкими и дорогостоящими их моделирование в лабораторных условиях. Во-вторых, в космическом пространстве возмущающие моменты, действующие на летательный аппарат, очень малы и поэтому обычно нет необходимости в больших по величине восстанавливающих моментах, создаваемых системой ориентации и стабилизации. Однако небольшие возмущающие моменты в условиях почти полного вакуума и отсутствия естественного демпфирования оказывают существенное влияние на движение КА, особенно пассивных систем ориентации и стабилизации, у которых управляющие моменты малы по величине. По этой причине приобретают особо важное значение вопросы динамйки систем ориентации и стабилизации.  [c.10]

Прослеживается расширение требований к источникам питания. Следует отметить перспективность инверторных источников питания (тиристорных и транзисторных на сверхзвуковых частотах) в установках и станках для дуговой, контактной, электроннолучевой и других видов сварки. Традиционные сварочные источники питания еще не исчерпали своих возможностей, особенно это касается сварочных трансформаторов с устройствами стабилизации горения дуги, источников с индуктивностью и емкостью в сварочной цепи, малогабаритных источников питания с yJ yчшeнными энергетическими показателями, а также многопостовых систем питания постоянного и переменного тока.  [c.116]

На примере моделирования адаптивной системы управления фрезерного станка с электрическими приводами подач рассмотрим некоторые особенности моделирования систем числового программного управления с учетом изменения силы резания. Принципиальная схема адаптивной системы управления фрезерного станка по одной координате X показана на рис. 65, а. В данном случае адаптивной системы задача состоит в стабилизации силы резания Рх за счет регулирования подачи по координате. Со считывающего устройства 1 сигнал программы i/ц поступает на интерполятор 2, после которого сигналы заданных перемещений у, и х, поступают на системы управления по координатам. Далее х, сравнивается с сигналом Хд, который поступает с датчика 6, измеряющего действительное перемещение стола. Сигнал рассогласования Ах преобразуется и усиливается блоком 3 и суммируется с напряжением 0 с тахогенератора ТГ. С помощью электрического привода подачи, состоящего из усилителя постоянного тока 4, усилителя мощности УМ, двигателя постоянного тока Д, безлюфтового редуктора ВР, шариковой винтовой пары и тахогенератора, стол станка перемещается по координате X в соответствии с сигналом программы.  [c.103]

Существенное влияние на динамику и точность систем гравитационной стабилизации оказывают также эффекты, связанные с нежесткостью элементов конструкции спутника (В. И. Попов, 1965 В. Ю. Рутковский, 1965 Т. В. Харитонова, 1966), особенно если учесть, что длина штанги с грузом на конце, используемой для обеспечения необходимых. восста-навливаюпщх гравитационных моментов, может достигать десятков метров.  [c.299]

К числу факторов, ограничивающих возможности использования пневматического метода измерений, следует отнести прежде всего необходимость наличия особого источника энергии (компрессора), специальных устройств для стабилизации давления и тщательной очистки потребляемого сжатого воздуха, так как нарушение этих условий ведет к значительному росту погрешностей измерения. Пневматические приборы с измерением давления обладают значительной инерционностью, особенно при высокоточных измерениях. Производительность контроля деталей до 3000 шт1ч при допусках >5 мкм. Инерционность пневматических систем иногда используется для усреднения показаний. Применение существующих пневматических  [c.155]

Недостатки КИА связаны с несинхронным включением тока, больщим износом игнитронов из-за перегрузки зажигателен, невозможностью HvTaBHoro регулирования тока и отсутствием системы корректировки симметричной работы в каждом полупериоде. Вместо КИА можно применять прерыватель игнитронный асинхронный ПИА, который имеет систему для плавной регулировки тока и кор-ретирующее устройство для симметричной работы ламп. Для синхронного включения тока, плавной его регулировки, корректировки симметричной работы и стабилизации напряжения созданы еще более соверщенные схемы управления типа ПИТ для точечной сварки и ПИШ для щовной сварки деталей ответственного назначения. Ремонт и обслуживание таких управляющих устройств осуществляются высококвалифицированными электриками. Описание работы схем прилагается к паспорту машины. Прерыватель ПИШ в отличие от ПИТ имеет дополнительное устройство для периодического прерывания тока. Тиристорные контакторы имеют такие же принципиальные схемы управления, как и игнитронные. Различия связаны с особенностями работы тиристоров, которые могут включаться при небольших напряжениях и токах и расходуют малую энергию для управления. Их недостаток связан с высокой чувствительностью к пикам тока и перенапряжениям, что требует быстродействующей защиты. При встроенном в прерыватель ПИТ или ПИШ тиристорном контакторе (рис. 104, а) для защиты тиристоров использован быстродействующий предохранитель ПНВ-3, а для согласования небольшого сопротивления управляющих переходов тиристоров с большим сопротивлением анодной лампы связи Л6 перемотанные трансформаторы ТР5 и ТР6. Включение вторичных обмоток ТР5 и ТР6 во входные цепи тиристоров исключает блок поджига тиристоров. Класс тиристора не ниже 6. Расход воды  [c.142]


Смотреть страницы где упоминается термин Особенности систем стабилизации : [c.149]    [c.6]    [c.14]    [c.46]    [c.131]    [c.431]    [c.181]    [c.376]    [c.387]    [c.268]   
Магнитные системы управления космическими летательными аппаратами (1975) -- [ c.124 , c.126 , c.132 , c.133 ]



ПОИСК



Принципы построения и особенности пассивных систем стабилизации

Системы стабилизации

Стабилизация

Стабилизация особенностей



© 2025 Mash-xxl.info Реклама на сайте