Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Использование искусственных спутников Земли

Наиболее экономичным способом стабилизации углового положения КА является стабилизация вращением в заданном, ориентируемом положении и управление скоростью вращения. Настоящая книга посвящена вопросам аналитического анализа динамики КА, стабилизированного вращением, с учетом воздействия на него внешних факторов — аэродинамических сил, геомагнитного поля, особенностей конструкции, а также исследованию систем угловой стабилизации, ориентации и систем стабилизации угловой скорости собственного вращения. В книге представлены материалы по возможному использованию искусственных спутников Земли, стабилизированных вращением, и основные особенности деятельности экипажа в условиях искусственной гравитации. В предлагаемой книге предпринимается попытка  [c.5]


В новом издании заново написаны главы 6, 7, 19, 21, посвященные использованию искусственных спутников Земли и орбитальных станций, полетам к планетам группы Юпитера и кометам. В других главах появились новые параграфы и внесены различные изменения В изложение. Практические нетронутыми остались часть третья, по-  [c.8]

ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ  [c.150]

Научное использование искусственных спутников Земли // Сб. статей. М, Иностранная литература, 1960. 404 с.  [c.267]

Однако в космонавтике может найти применение не только энергия радиоактивного распада, но и ядерная энергия связи. Уже вскоре после запуска первого советского искусственного спутника Земли американские ученые приступили к разработке программы Орион , предусматривающей создание космического ракетного двигателя, получающего тягу в результате последовательных взрывов ядерных зарядов (рис. 45). Конечно, запуск космического корабля с подобным двигателем можно осуществить с помощью обычного химического двигателя, а первый ядерный заряд взрывать уже вне пределов атмосферы. Как показали расчеты, ракета с таким двигателем при стартовой массе около 3600 т смогла бы доставить на поверхность Луны полезный груз в 680 т. Для этого потребовалось бы взорвать 800 плутониевых бомб общей массой 525 кг. В последующие годы данный проект основывался на использовании взрывов термоядерных зарядов, но в 60-х годах вся работа по программе Орион была свернута в связи с подписанием Московского договора о запрещении испытаний ядерного оружия в атмосфере, в космическом пространстве и под водой. Однако в ядерных ракетных  [c.132]

В настоящее время проектируются искусственные спутники с корпусом из углепластиков. Например, Национальным управлением США по аэронавтике и исследованию космического пространства (НАСА) планируется запуск космического спутника-телескопа. Этот телескоп предполагается изготовить с широким использованием углепластиков. По сравнению с лучшими наземными телескопами четкость изображения космического телескопа будет в 10 раз выше, а разрешающая способность - в 10 раз [5]. В Японии в настоящее время на основе углепластиков разрабатываются каркасы корпусов искусственных спутников Земли, скелетные конструкции солнечных батарей и т. д. [6].  [c.204]

Введение. Растущий объем исследований космического пространства требует разработки более мощных источников энергии с длительным сроком службы. Для освоения околоземного пространства с помощью искусственных спутников Земли необходимы энергетические установки мощностью от нескольких ватт до нескольких киловатт. Разрабатываемые проекты обслуживаемых орбитальных станций предусматривают источники энергии мощностью в десятки киловатт со сроком службы несколько лет. Дальнейшее использование полярных спутников связи для трансляции широковещательных теле- и радиопрограмм по нескольким каналам приводит к необходимости разработки энергетических установок мощностью в сотни киловатт. По-видимому, в ближайшем будущем потребуются установки мощностью в тысячи и десятки тысяч киловатт с длительным сроком службы для создания пилотируемых межпланетных кораблей, обитаемых баз на Луне и других целей. Решение этих задач возможно при использовании ядерных источников энергии, обладаю-  [c.217]


В пассивных магнитных системах стабилизации демпфирование угловых колебаний спутника осуществляется главным образом за счет использования гистерезисного перемагничивания в стержнях из специальных магнитных материалов с высокой магнитной проницаемостью. Их действие основано на том, что колебания спутника уменьшаются в результате потерь энергии на гистерезис. Потери энергии пропорциональны площади, расположенной внутри замкнутой гистерезисной кривой намагничивания В = f H) (рис. 2.5). Так как гистерезисная характеристика неоднозначна, то трудно записать аналитическое выражение для точной временной зависимости демпфированных колебаний. Наличие гистерезисного демпфирования в сочетании с демпфированием, обусловленным вихревыми токами, было подтверждено испытаниями на ряде искусственных спутниках Земли [64].  [c.33]

Решение задачи о движении точки в плоскости экватора сжатого сфероида, использованное в главах 2 и 4, основывается на существовании двух интегралов движения для случая любой центральной силы, зависящей от расстояния, вследствие чего задача может быть сведена к квадратурам [80] или подвергнута непосредственному качественному анализу [47]. Небезынтересно рассмотреть это решение применительно к конкретной задаче о движении экваториального искусственного спутника Земли. Решение этой задачи в полярных координатах выражается в эллиптических функциях. Учитывая, что общую задачу о движении спутника удобно решать в оскулирующих элементах [61], полезно выявить характер их изменения в случае, допускающем точное решение, чтобы проследить связь между свойствами движения и поведением оскулирующих элементов.  [c.400]

Одним из самых изящных решений в этой области является использование в качестве датчика яркости пламени миниатюрного элемента солнечной батареи из тех, что применяются на искусственных спутниках Земли для преобразования лучистой солнечной энергии в электрический ток питания аппаратуры. Дело в том, что подобный элемент хорошо улавливает и преобразует в колебания электрического тока не только низкочастотные пульсации, видимые глазу, но и сравнительно высокочастотные, вплоть до десятков килогерц (т. е. даже в звуковом и ультразвуковом диапазонах). А эти последние едва ли не в большей степени определяют наилучший режим горения, чем колебания на низких частотах.  [c.26]

Большое внимание в США уделяется всем службам наблюдения за будущим полетом искусственного спутника Земли, для чего, помимо использования технически средств армии и флота США, широко привлекается население, в частности любители-астрономы, радиолюбители и все желающие вести наблюдения под общим руководством Академии наук.  [c.436]

Исследования, проводимые с использованием искусственных спутников, показали, что для Земли это условие не выполняется. Земля имеет слегка грушевидную форму, так что U3 хотя и мало, но нулю не равно.  [c.192]

Крупные ОКС на орбитах искусственных спутников Земли позволят приобрести опыт и знания в использовании космической техники для улучшения жизни на Земле.  [c.212]

Не следует думать, что в то время не знали о возможности использования магнитного поля Земли для управления КА. Уже вскоре после запуска первого искусственного спутника Земли на эту возможность указывали, в частности, в СССР чл.-корр. АН СССР Б. В. Раушенбах и его сотрудники.  [c.7]

Советские ученые и специалисты участвуют в работах Международной астронавтической федерации, президентом которой дважды избирался академик Л. И. Седов, и в работах Международного комитета по изучению космического пространства (КОСПАР). В 1962 г. по инициативе Советского правительства между Академией наук СССР и Национальным управлением США по аэронавтике и изучению космического пространства (НАСА) заключено соглашение о сотрудничестве в использовании искусственных спутников Земли для нужд метеорологии, геомагнитных измерений и сверхдальней радиосвязи. С 1966 г. по соглашению между СССР и Францией проводятся эксперименты передач цветного телевидения с помощью советских спутников связи Молния-1 и намечаются совместные исследования космического пространства.  [c.453]


В настоящее время появились два направления крупномасштабного использования принципа фотоэлектрического преобразования. Одно из них предусматривает использование искусственных спутников Земли, выведенных на геосиихронные орбиты и оборудованных солнечными панелями из фотоэлементов.  [c.35]

Плазменный метод напыления широко используется для получения покрытий, обладающих высокой степенью черноты. Известны, например, покрытия Рокайд-А из окиси алюминия, использованные в ппибопно.хт отсеке искусственного спутника Земли Эксплорер-1 [.59], Степень черноты покрытия при температуре 303— 400 К лежит в пределах 0,8,5—0.9, одмако увеличение температуры эксплуатации ведет к резкому снижению излучательной способности покрытия. Так, уже при температуре 600 К степень черноты падает до 0,6, а при 1000 К — до 0,4—0,5 [52].  [c.97]

Задачи эти крайне сложны и многообразны. Достаточно указать, например, что для освоения околосолнечного пространства могут использоваться летательные аппараты, существенно различные по выполняемым функциям и по конструктивному исполнению. К числу их основных классов относятся ракеты-зонды, орбитальные самолеты, взлетающие с земной поверхности и совершающие полеты по орбитам за пределами земной атмосферы, искусственные спутники Земли без тяговых двигателей и сателлоиды (искусственные спутники, снабженные тяговыми двигателями), межпланетные автоматические станции, оборудованные регистрирующими измерительными приборами и передающие накапливаемую информацию наземным станциям связи, космические корабли, используемые для межпланетных сообщений, и космические лаборатории, предназначенные для длительного пребывания в космо-се научно-исследовательского персонала. Более того отдельные классы космических летательных аппаратов подразделяются на большое количество групп применительно к различным аспектам их использования. Так, искусственные спутники Земли выполняются в различных модификациях для проведения научных исследований, для удовлетворения нужд дальней радиосвязи и телевидения, навигации и метеорологии и для осуществления ряда других практических задач.  [c.408]

Послевоенная техника связи значительно изменилась. В ее обиход вошли такие новые средства, как радиорелейные линии, высокочастотные кабели и волноводы, ультракоротковолновые тропосферные и метеорные станции, искусственные спутники Земли, средства электронной автоматики, полупроводниковые приборы, электронные вычислительные машины, квантовооптические устройства и многое другое. Качественно и количественно изменились и потребности в связи. Резко возрос спрос на связь, вызванный небывалым ростом наших городов, промышленных центров, сельскохозяйственных предприятий. Увеличились потребности в абонентской связи. Огромное развитие получили ультракоротковолновое радиовещание, телевидение, фототелеграфия. Возникла необходимость в использовании средств связи для выпуска на местах центральных газет, для обеспечения взаимодействия вычислительных центров между собой и с потребителями. При этих условиях дальнейшее применение связи в государственном масштабе сделалось невозможным без создания единой автоматизированной системы. Вот почему ХХП1 съездом КПСС была поставлена задача усилить работы по созданию единой автоматизированной системы связи, обеспечивающей бесперебойную и надежную передачу всех видов информаций  [c.392]

Котельн и ковВ.А. и др.. Использование эффекта Допплера для определения параметров орбиты искусственных спутников. Сб. Искусственные спутники Земли , вып. 1, 1958.  [c.333]

Гурко О. В., Слабкий Л. И., Использование силовых влияний гравитационного и светового полей Солнца для ориентации космических аппаратов. Сб. Искусственные спутники Земли , Изд-во АН СССР, 1963, вып, 16, 34—45.  [c.412]

В динамике космического полета можно отчетливо проследить плодотворные взаимодействия техники и ряда фундаментальных и прикладных наук. Особенно следует подчеркнуть широкое использование методов и результатов небесной механики для решения задач динамики в гравитационных полях Солнца и планет солнечной системы. Так теория кеплеровых движений, теория возмущений орбит, исследование движений в оскулирующих элементах (метод Лагранжа) перешли из небесной механики в динамику космического полета с относительно небольшими изменениями и дополнениями. Но в ряде задач (например, теория движения искусственных спутников Земли) динамики космического полета пришлось создавать и разрабатывать совершенно новые методы исследования. Эти новшества вызываются дополнительными силами, которые в задачах небесной механики не играют существенной роли. Так, при движении спутников Земли на высотах до 500—700 км аэродинамические силы, обусловленные наличием атмосферы, оказывают влияние на законы движения и приводят к постепенному изменению (эволюции) орбит спутников. Изучение этих эволюций требует знания строения атмосферы на больших высотах и знания, законов аэродинамического сопротивления при полете с первой космической скоростью в весьма разреженной среде. Развитие космонавтики обусловило быстрый прогресс и аэродинамики и метеорологии.  [c.19]

Движение точки в поле тяготения земного сфероида. Названная задача является основной в теории движения близкого искусственного спутника Земли. Следует, конечно, еще учитывать существенное влияние атмосферы Земли на движение спутника, и этому учету посвящен ряд работ. Не останавливаясь здесь на этом вопросе, рассмотрим движение спутника в поле тяготения Земли, пренебрегая всеми остальными факторами. Отличие поля тяготения Земли от поля тяготения ньютоновского центра вызывает возмущения в траектории спутника и отличие ее от кеплеровского эллипса. Существует хорошо разработанный в небесной механике аппарат теории возмущенийтак называемые уравнения в оскулирующих элементах. Использование этого аппарата позволяет весьма просто установить, что основными возмущениями в рассматриваемом случае будут поступательные движения узла орбиты и перигея орбиты. Однако эта задача оказалась занимательной и совсем с другой точки зрения. Обнаружилось, что эта задача в известном смысле эквивалентна старой классической задаче о движении точки в поле тяготения двух неподвижных притягивающих центров. Эта последняя задача, как известно, интегрируется в квадратурах она рассматривалась многими авторами, но не нашла конкретного применения в небесной механике. Появление искусственных спутников стимулировало бурный прогресс в исследованиях и привело, между прочим, и к открытию упомянутой эквивалентности. Таким образом, старая задача получила новое и очень важное конкретное приложение к теории движения искусственных спутников Земли. Первая публикация [1], устанавливающая эквивалентность двух задач, принадлежит молодым советским ученым Е. П. Аксенову, Е. А. Гребенникову, В. Г. Демину, (1961 г.). (В книге Брауэра и Клеменса [2], изданной в 1961 г., также содержится краткое упоминание о такой эквивалентности). Рассмотрим вопрос несколько подробней.  [c.38]


Одним из важных направлений в развитии техники космических полетов является создание ориентированных искусственных спутников Земли. Решение этой задачи позволяет осуществить проведение требующих ориентации научных экспериментов в межпланетном пространстве, возвращение на Землю спутника или кассеты с результатами этих экспериментов, создание системы рентрансляционных спутников, используемой для целей глобальной радиосвязи и телевидения, запуск метеорологических и геодезических спутников и др. В зависимости от поставленных задач ориентация искусственного спутника может быть осуществлена с использованием активных или пассивных методов.  [c.296]

Одним из таких путей оказалось использование классической задачи двух неподвижных центров, связь которой с задачей о движении в поле земного притяжения была установлена в конце 50-х годов одновременно в СССР и в США. Было показано, что потенциал Земли может быть приведен надлежащим выбором некоторых параметров к потенциалу двух неподвижных центров, имеющих комплексные массы и разделенных комплексным расстоянием. Так как задача двух неподвижных центров полностью проинтегрирована еще Эйлером, появилась возможность применить известные классические формулы к новой, более общей задаче, и тем самым построить стройную аналитическую теорию, дающую промежуточную орбиту искусственных спутников Земли, более близкую к действительной их орбите, чем ббычный кеплеров эллипс.  [c.359]

В последнее время проблеме надежности электронных компонентов, предназначенных для использования в электронных вычислительных машинах и искусственных спутниках Земли, стали уделять серьезное внимание. Зависимость надежности электронных компонентов от времени иногда следует показательной функции, иногда— распределению Гаусса, здесь же рассмотрено распределение Вейбулла, yдoби(Je тем, что оно позволяет объедтгить обе вышеуказанные фу гкцпи.  [c.396]

Изучение движения искусственных спутников Земли представляет интерес не только для специалистов по астродинамике, занимающихся прогнозированием движения ИСЗ и проектированием их орбит. Проблема эта ныне интересует широкий круг ученых, и прежде всего астрономов, геофизиков и геодезистов. Определение постоянных гравитационного поля Земли и параметров земной атмосферы, изучение лунно-солнечных приливов и движения полюса — вот неполный перечень задач, которые уже сейчас успешно решаются с помощью наблюдений ИСЗ. Можно думать, что в будущем появятся и другие не менее итересные и важные задачи, решение которых будет тесно связано с использованием наблюдений искусственных спутников.  [c.7]

Числовые значения коэффициентов разложения потенциала притяжения Земли определяются как при помощи гравиметрических и геодезических измерений, так и по наблюдениям Луны и искусственных небесных тел. В последние годы часто используется комбинированный метод, основанный на совместном использовании гравиметрических и спутниковых данных. Начиная с 1958 г. при помощи наблюдений искусственных спутников Земли было выведено несколько десятков систем постоянных геопотенциала ). Наиболее полные результаты были получены в Смитсонианской обсерватории США на основе  [c.29]

На повестке стоял вопрос, можно ли в ближайшее время произвести запуск искусственного спутника Земли крупньгх размеров на орбиту, находящуюся на удалении в 320 километров от Земли. Под ближайшим временем подразумевался период в 2-3 года. Вернер фон Браун заявил, что это можно сделать раньше, и изложил свои соображения относительно использования ракеты Редстоун в качестве первой ступени и нескольких связок ракет Локи ( Loki , доработанная немецкая ракета Тайфун на твердом топливе, предназначенная для установки залпового огня типа ЬСа-  [c.378]

Провести необходимые мероприятия для использования всех имеющихся в распоряжении Академии наук СССР и промышленных министерств технических средств и создать на территории СССР в трехмесячный срок систему наблюдений всех видов (радиотехнических, оптических и др.) за полетом искусственного спутника Земли.  [c.436]

Большие перспективы для развития авиационной астрономии раскрываются в настоящее время в связи с работами над решением проблемы пеленгации звезд в условиях дневного полета и применения искусственных спутников Земли в целях самолетовождения, а также в связи с появлением самолетного автоматического солнечного радиосекстанта. Использование приборов, позволяющих пеленговать небесные светила в любое время суток независимо от погоды, а также вычислителей для автоматического расчета элементов линии положения самолета позволит более широко применять авиационную астрономию для решения основных задач самолетовождения.  [c.6]


Смотреть страницы где упоминается термин Использование искусственных спутников Земли : [c.154]    [c.158]    [c.160]    [c.162]    [c.168]    [c.277]    [c.401]    [c.451]    [c.452]    [c.40]    [c.6]    [c.374]    [c.183]    [c.169]   
Смотреть главы в:

Механика космического полета в элементарном изложении  -> Использование искусственных спутников Земли



ПОИСК



Газ искусственный

Земли

Спутник

Спутник искусственный

Спутники Земли искусственные



© 2025 Mash-xxl.info Реклама на сайте