Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Управляемость вертолета

На основании результатов моделирования исследуются вопросы устойчивости управляемости вертолета при отрыве (например, в результате вибрационных нагрузок) части лопасти несущего или рулевого винтов.  [c.4]

В работе исследуются вопросы устойчивости управляемости вертолетов при отрыве части лопасти несущего или рулевого винтов. Основные формы движения получены аналитически, уравнения в общем Виде решены с применением аналоговых математических машин. На основании результатов моделирования и расчетов оценивается допустимая массовая неуравновешенность несущего и рулевого винтов. Таблиц 2, рис. 6, библ. 3.  [c.220]


Центровка вертолета определяется по отношению к оси несуш,его винта и выражается расстоянием от нее в миллиметрах. Одновинтовые и соосные вертолеты имеют небольшой диапазон центровок например, диапазон центровок Ми-4 составляет 370 мм 300 мм впереди и 70 мм позади оси несущего винта. Вертолеты же продольной схемы имеют большой диапазон центровок. Положение ц. т. вертолета значительно влияет на управляемость и меньше на его устойчивость. При выходе центровки за предельные величины управляемость вертолета нарушается. В этом случае рули не обеспечивают удержание вертолета в требуемом положении.  [c.75]

Понятие об устойчивости и управляемости вертолета  [c.208]

Управляемость вертолета характеризуется реакцией вертолета на отклонение органов управления. Показателями управляемости вертолета являются эффективность, чувствительность и мощность управления. Эффективность управления характеризуется управляющим моментом, действующим на вертолет при отклонении органа управления на величину, принимаемую зч единицу. Чувствительность управления определяется реакцией вертолета на единичное отклонение органа управления. Мощность управления характеризуется величиной управляющего момента, возникающего при максимальном отклонении органа управления.  [c.209]

Тип несущего винта вертолета определяется в основном конструкцией комлевой части лопасти и ее крепления к втулке. Конструкция комлевой части лопасти решающим образом влияет на движение лопасти в плоскостях взмаха и вращения и, следовательно, на характеристики управляемости вертолета, его вибрации, нагрузки и аэроупругую устойчивость. Различие типов несущих винтов определяется наличием или отсутствием ГШ и ВШ, а значит, и тем, совершает ли лопасть поворот как жесткое тело или имеют место изгибные деформации ее комлевой части.  [c.295]

Лопасти шарнирного несущего винта соединяются с втулкой с помощью ГШ и ВШ. Ось ГШ несколько отнесена от оси вращения винта вследствие конструктивных ограничений, а также для улучшения характеристик управляемости вертолета. ВШ должен быть отнесен от оси винта для того, чтобы вал мог передавать на винт крутящий момент. Назначение ГШ и ВШ состоит в снижении нагрузок на лопасть (поскольку изгибающий момент в шарнире равен нулю). При наличии ВШ необходимо иметь механический демпфер качания во избежание вызываемой земным резонансом неустойчивости взаимосвязанных качаний лопастей и движения втулки в плоскости вращения. Шарнирный несущий винт представляет собой классическое конструктивное решение проблемы нагрузок на комлевую часть лопасти и моментов на втулке. Его концепция проста, а анализ движения жесткой лопасти не представляет затруднений. Однако шарнирный винт механически сложен, так как у каждой лопасти имеются три шарнира (ГШ, ВШ и ОШ) и демпфер ВШ. Подшипники ГШ и ВШ передают одновременно силу тяги и центробежную силу лопасти на втулку и поэтому работают в очень напряженных условиях. Вблизи втулки располагаются автомат перекоса и вращающиеся и неподвижные элементы проводки управления. Таким образом, втулка требует большого объема работ по техническому обслуживанию и вносит существенный вклад во вредное сопротивление вертолета. В последнее время начали применяться эластомерные шарниры. При замене ими механических подшипников проблема технического обслуживав ния сильно упрощается.  [c.295]


При анализе устойчивости и управляемости вертолетов (как и самолетов) наиболее часто применяется связанная система координат. В связанной системе координатные оси жестко связаны с фюзеляжем при его возмущенном движении, тогда как инерциальная система координат неподвижна в пространстве. Поскольку установившаяся скорость вертолета определена относительно связанных осей, при их повороте будет менять направление и вектор скорости, что приводит к появлению центробеж-  [c.406]

Этот результат приведен в связанной системе координат, поскольку рассмотренный здесь учет движения вала нужен для последующего анализа устойчивости и управляемости вертолета. Аналогично, аппроксимацию с постоянными коэффициентами для сил на втулке представим матричным равенством  [c.544]

В данной главе были определены аэродинамические силы и моменты, необходимые для дальнейшего анализа динамики несущего винта махового движения и совместных махового движения и качания лопасти (гл. 12), а также устойчивости и управляемости вертолета (гл. 15). При необходимости с помощью изложенного анализа и имеющейся литературы могут быть определены аэродинамические силы и для других моделей движения лопасти. В заключение дадим вывод выражений для аэродинамических сил при изменении угла установки лопасти и махового движения несущего винта.  [c.549]

Рассмотрим теперь силы и моменты, действующие на втулку несущего винта, с учетом влияния махового движения. Ввиду того что реакции втулки нужны в основном для исследования устойчивости и управляемости вертолета (гл. 15), нас будут интересовать главным образом низкочастотные реакции. Сначала рассмотрим несущий винт на режиме висения, для которого анализ более прост не только ввиду постоянства коэффициентов уравнений, но и вследствие полного разделения вертикальных и продольно-поперечных движений благодаря осевой симметрии обтекания.  [c.576]

Управляемость вертолета определяется возможностью создавать на нем силы и моменты для достижения двух целей во-первых, для обеспечения равновесия сил и моментов, а следовательно, и возможности удерживать вертолет на желаемом установившемся режиме полета во-вторых, для создания ускорений, а следовательно, и возможности изменять скорость полета и пространственное и угловое положение вертолета. Как и у самолета, управляемость вертолета обеспечивается в основном путем создания моментов по тангажу, крену и рысканию. Имеется также рычаг управления мощностью двигателя. Кроме того, на вертолете предусмотрено непосредственное управление силой тяги, обеспечивающее возможность выполнения вертикального взлета и посадки. Этот дополнительный орган управления расширяет возможности вертолета, однако в то же время и усложняет задачу пилотирования. Некоторое упрощение этой задачи обычно достигается путем установки регулятора частоты вращения несущего винта, автоматически воздействующего на рычаг управления мощностью двигателя.  [c.699]

Продольная и поперечная скорости вертолета на режиме висе-ния изменяются путем создания моментов по тангажу и крену относительно центра масс вертолета, что представляет собой более трудную задачу. Летчик, воздействуя на рычаги управления, непосредственно изменяет углы тангажа или крена, в результате чего возникают продольная или поперечная сила, а затем и желаемое изменение скорости вертолета. Между силами и моментами, порождаемыми управляющими воздействиями, обычно имеется существенная взаимосвязь, так что любое управляющее воздействие для создания нужного момента требует некоторых компенсирующих воздействий по другим осям. Вертолет без системы автоматического повышения устойчивости не обладает ни статической, ни динамической устойчивостью, особенно на режиме висения. Поэтому сам летчик должен осуществлять управляющие обратные связи для стабилизации вертолета, что требует от него постоянного внимания. Использование автоматических систем для улучшения характеристик устойчивости и управляемости вертолета всегда желательно, а для ряда его применений — существенно важно, но такие системы увеличивают стоимость и усложняют конструкцию вертолета.  [c.700]


В работе [R.30] исследовались характеристики управляемости вертолета и установлена высокая чувствительность поперечного управления на режиме висения (угловая скорость крена при отклонении поперечного управления), которая может вызвать забросы при управлении или даже короткопериодическую раскачку вертолета летчиком. Было обнаружено, что усилия на ручке управления при выполнении маневров в продольном и поперечном направлениях могут оказаться неприемлемыми из-за неустойчивого или нулевого градиента усилий, требуемых для выдерживания углов крена или тангажа, и взаимосвязи продольных и поперечных усилий. Устойчивость по частоте вращения несущего винта обусловливает чувствительность вертолета к порывам ветра и как следствие снос относительно земли на висении. Косвенная природа управления поступательной скоростью создает впечатление запаздывания в управлении, что нежелательно. В работе [R.30] предложено также увеличить демпфирование по крену для уменьшения чув-  [c.734]

Рассмотрим характеристики управляемости вертолета при полете вперед. Вследствие поступательной скорости появляются новые силы, действующие на вертолет центробежные, возникающие при повороте вектора скорости вертолета относительно связанной системы координат аэродинамические, воздействующие на фюзеляж и хвостовое оперение силы на несущем винте, пропорциональные характеристике режима. В результате характеристики управляемости вертолета при полете вперед и на режиме висения существенно различны. При полете вперед вертикальное и продольно-поперечное движения связаны через силы на несущем винте и ускорения фюзеляжа. Тем не менее будем вновь предполагать возможным раздельный анализ продольного движения (продольная скорость, угол тангажа и вертикальная скорость) и бокового движения (поперечная скорость, угол крена и угловая скорость рыскания). Такой подход дает удовлетворительное описание динамики вертолета, хотя на самом деле все шесть степеней свободы взаимозависимы.  [c.747]

Резюмируя, можно сказать, что условие о кривизне кривой нормального ускорения определяет характеристику управляемости вертолета, тесно связанную с его маневренностью кривизна кривой нарастания нормального ускорения при ступенчатом продольном управляющем воздействии должна стать  [c.761]

Работа [G.130] посвящена летным исследованиям продольной управляемости вертолетов. Летчик хорошо ощ,ущ,ает нормальное ускорение, которое служит ему основным источником информации для управления траекторией при полете вперед. Поэтому взятие ручки на себя используется как стандартный маневр для определения реакции вертолета по нормальному ускорению.  [c.765]

Одновинтовой вертолет без стабилизатора реагировал на ступенчатое отклонение циклического шага непрерывно растущей угловой скоростью тангажа. Нормальное ускорение с некоторым запаздыванием возрастало без какой-либо тенденции к выходу на установившееся значение. При неподвижном управлении наблюдались неустойчивые колебания. Вертолет со стабилизатором на ступенчатое отклонение управления реагировал быстрым нарастанием угловой скорости, которая стремилась к постоянному значению. Нормальное ускорение возникало с запаздыванием, но спустя 2 с после отклонения, ручки оно стремилось к постоянному значению. Для выхода из маневра требовалось меньшее отклонение управления, и колебания при неподвижном управлении были слабозатухающими. Управляемость вертолета со стабилизатором оказалась гораздо более приемлемой. Пытаясь количественно определить желаемые характеристики, авторы использовали условие о кривизне в динамике продольного движения. Они заключили, что наиболее важной характеристикой продольной управляемости является кривая нарастания нормального ускорения при ступенчатом отклонении управления управляемость лучше, если рост ускорения начинается уже на первой секунде. Влияние стабилизатора проявлялось в основном в увеличении устойчивости по углу атаки, т. е. в изменении производной Mw от положительного значения (неустойчивость от винта и фюзеляжа) до отрицательного, по модулю равного половине исходного.  [c.765]

На режиме висения характеристики продольной управляемости вертолета продольной схемы несколько лучше, чем для одновинтового ввиду больших демпфирования и эффективности управления боковая управляемость оказывается несколько хуже из-за меньшего демпфирования по рысканию и больших моментов инерции по рысканию и крену. При полете вперед вертолет продольной схемы сильно неустойчив по углу атаки из-за  [c.770]

В работе [А. 15] было сделано заключение, что основная проблема управляемости вертолета продольной схемы связана с неустойчивостью по углу атаки из-за несущих винтов. Для повышения устойчивости было предложено использовать на переднем винте компенсатор взмаха. Исследованный в работе вертолет имел неустойчивость и по скорости. В работе [Т.26] были выполнены теоретические и летные исследования неустойчивости по скорости вертолета продольной схемы при полете вперед. Неустойчивость была вызвана уменьшением индуцируемого передним винтом скоса потока на заднем винте при увеличении скорости полета. Расчеты, в которых для вычисления индуктивной скорости на заднем винте, обусловленной влиянием переднего, было принято в = Уц. позволили получить приближенную оценку неустойчивости по скорости. Было найдено, что продольный встречный наклон автоматов перекоса увеличивает устойчивость по скорости. Вертолет стал слабо устойчивым при угле наклона 4,5°. В работе [В.95] сделано заключение  [c.772]

Для улучшения боковой управляемости вертолета продольной схемы при полете вперед, согласно работе [А.24], необходимо снизить устойчивость по углу скольжения это же увеличивает устойчивость боковых колебаний. Указанного снижения можно достигнуть установкой на вертолете крыла, что одновременно улучшает управляемость по крену, или применением упругой крутки лопасти, так как момент кручения вызывает изменение углов установки лопасти с частотой вращения винта и амплитудой, пропорциональной изменению поперечной скорости несу-  [c.772]


Характеристики управляемости вертолета могут быть улучшены применением автоматических систем управления. Для некоторых видов полетов, например для полета по приборам, автоматическая система улучшения устойчивости и управляемости необходима. Применение таких систем, естественно, усложняет конструкцию и увеличивает стоимость вертолета. Часто основным элементом автоматического управления вертолета является гироскоп. Поскольку сам несущий винт можно рассматривать как гироскоп, возможно использование управляющего гироскопа, который воспринимал бы те же инерционные силы, которые действуют и на несущий винт. Такая система управления может быть целиком механической, либо она может использовать гироскоп в качестве датчика, управляющие сигналы которого отрабатываются электрогидравлическими приводами.  [c.776]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]

В работе [А.15] была исследована управляемость вертолета продольной схемы. Было установлено, что указанные выше требования применимы и в этом случае, хотя, вероятно, их следует ужесточить ввиду возможной неустойчивости по скорости. Работа [R.33] была посвящена исследованию влияния демпфирования вертолета по тангажу на характеристики продольной управляемости для увеличения демпфирования использовался стабилизирующий стержень, создававший запаздывающую обратную связь по угловой скорости. Путем сопоставления оценок летчика с условием о кривизне кривой нормального ускорения было установлено, что выводы работы [G.130] применимы и к изменению продольного демпфирования (первоначальные требования в основном касались влияния неустойчивости вертолета по углу атаки). Предельные характеристики управляемости соответствовали времени перегиба кривой нормального ускорения от 1,85 до 2,1 с после отклонения управления.  [c.788]

В работе [А.24] были предложены критерии боковой устойчивости и управляемости вертолетов одновинтовой и двухвинтовой продольной схем при полете вперед. Установлена необходимость устойчивости движения рыскания в полете с фиксированными педалями. Время уменьшения амплитуды вдвое для колебательного движения крена с фиксированной ручкой управления должно быть меньше длительности двух периодов, если период меньше 10 с (что соответствует относительному коэффи-  [c.788]

ТОГО, при полете вперед периодически изменяются с периодом 2n/Q. Это создает серьезную проблему для конструкторов необходимо каким-то способом уменьшить изгибающие моменты в комлевых частях и снизить напряжения в лопастях до допустимого уровня. Если лопасти жесткие, как у пропеллера, то все аэродинамические нагрузки воспринимает конструкция. У гибких же лопастей под действием аэродинамических сил возникают значительные изгибные колебания, в результате которых аэродинамические силы могут изменяться так, что нагрузка лопастей существенно снизится. Таким образом, при полете вперед азимутальное изменение подъемной силы лопасти вызывает ее периодическое движение с периодом 2n/Q в плоскости, нормальной к плоскости диска (плоскости взмаха). Это движение называют маховым. С учетом инерционных и аэродинамических сил, обусловленных маховым движением, результирующие нагрузки лопасти в комлевой части и момент крена, передающийся на фюзеляж, существенно уменьшаются. Обычно для снижения нагрузок втулки несущих винтов снабжают горизонтальными шарнирами (ГШ). При маховом движении лопасть поворачивается вокруг оси ГШ как твердое тело (см. рис. 1.4). Так как на оси ГШ момент равен нулю, на фюзеляж он вообще не может передаться (если относ оси ГШ от оси вращения равен нулю), а изгибающие моменты в комлевой части лопасти должны быть малы. Несущий винт, у которого имеются горизонтальные шарниры, называют шарнирным винтом. В последнее время на вертолетах с успехом применяют несущие винты, не имеющие ГШ и называемые беешарнирными. При использовании высококачественных современных материалов комлевую часть лопасти можно сделать прочной и в то же время достаточно гибкой, чтобы обеспечить маховое движение, которое снимает большую часть нагрузок в комле лопасти. Вследствие значительных центробежных сил, действующих на лопасти, маховые движения у шарнирных и бесшарнирных винтов весьма сходны. Естественно, нагрузка комлевой части лопасти у бесшарнирных винтов выше, чем у шарнирных, а увеличение момента, передаваемого на втулку, оказывает значительное влияние на характеристики управляемости вертолета. В целом маховое движение лопастей уменьшает асимметрию в распределении подъемной силы по диску винта при полете вперед. Поэтому учет махового движения имеет принципиальное значение в исследовании аэродинамических характеристик несущего винта при полете вперед.  [c.155]

Преобразование параметров и уравнений движения при переходе к иевращающейся системе координат будем называть фурье-преобразованием. Имеется много общего между этим преобразованием координат, рядами Фурье, интерполяцией Фурье и дискретным преобразованием Фурье. Так, общим является периодический характер системы. Фурье-преобразование координат широко применялось в исследованиях, хотя часто лишь на эвристической основе. Оно было использовано, например, в работе [С.77] для представления движения лопасти в плоскости вращения при анализе земного резонанса и в работе [М.121] для представления махового движения лопасти при анализе устойчивости и управляемости вертолета. Среди недавних работ с применением фурье-преобразования координат на более солидной математической основе можно отметить [Н.137].  [c.327]


Суммарные силы и моменты у комля вращающейся лопасти передаются на фюзеляж вертолета. Постоянные составляющие этих реакций втулки в невращающейся системе координат представляют силы и моменты, необходимые для балансировки вертолета. Высокочастотные составляющие вызывают вибрации вертолета. Если в модели винта учтено движение вала, то эти силы и моменты определяют характеристики устойчивости и управляемости вертолета. На рис. 9.7 показаны силы и моменты, действующие на вращающуюся лопасть, а также силы и моменты, действующие на втулку в невращающейся системе координат. Вертикальная сила Sz участвует в создании тяги, а силы в плоскости вращения Sx и —в создании продольной и поперечной сил несущего винта. Момент в плоскости взмаха Nf создает продольный и поперечный моменты несущего винта, а момент в плоскости вращения — крутящий момент на валу винта. Условимся, что положительные реакции втулки действуют на вертолет, за исключением аэродинамического крутящего момента Q, который по определению воздействует на винт (реактивный момент, передаваемый от винта на втулку, поло-  [c.389]

До сих пор в анализе динамики рассматривалось только движение самого несущего винта. Движение вала винта также является важным фактором как с точки зрения проблем устойчивости и управляемости вертолета, в которых рассматриваются степени свободы фюзеляжа как жесткого тела, так и в отношении проблем я роупругости, включающих связанное движение упругого фюзеляжа и винта. На рис. 9.10 показаны линейные и угловые движения втулки. Возмущенное линейное смещение втулки относительно установившейся траектории полета обозначается перемещениями Лвт, Увт и Zbt] возмущенное угловое смещение — углами ах, ау и аг. В данном случае используется инерциальная система координат, которая остается неподвижной в пространстве при возмущенном движении втулки.  [c.400]

При анализе устойчивости и управляемости вертолета чаще всего используется связанная система координат. В инерциаль-ной системе координат, расоматривавшейся выше, при угловом перемещении вала оси поворачиваются относительно составляющих скорости полета ц и Япв, фиксированных в пространстве на балансировочном режиме, создавая возмущения относительной воздушной скорости. В связанных же системах при отклонениях вала вектор скорости полета остается неподвижным. Возмущения скорости в связанной.системе координат равны  [c.543]

Маховое движение лопасти несущего винта играет главную роль почти в любом аспекте динамики вертолета. Гл. 5 в основном была посвящена установившемуся маховому движению при полете вперед. Здесь мы будем рассматривать динамические ха-рактеристки махового движения, т. е. собственные значения во вращающейся и невращающейся системах координат, а также изменение махового движения под действием управления, порывов ветра и движения вала винта. Кроме того, будут подвергнуты анализу реакции втулки при движении вала с учетом динамики махового движения. Полученные уравнения затем будут использованы в гл. 15 при исследовании устойчивости и управляемости вертолета. Принимая вал неподвижным, можно рассматривать одну лопасть с одной степенью свободы во вращающейся системе координат. Если исследуется движение несущего винта в целом, то принимаются во внимание N степеней свободы, по одной для каждой лопасти.  [c.554]

Время уменьшения амплитуды вдвое о,5 равно 0,693т и обычно соответствует азимуту 90°. Ввиду высокого демпфирования переходный режим махового движения заканчивается менее чем за один оборот несущего винта. Абсолютные значения времени 0,5 близки к 0,05 с. Следовательно, переходный ре сим соответствует диапазону гораздо более высоких частот, чем управляющие воздействия летчика, движение вала (т. е. движение вертолета как жесткого тела) или порывы ветра. Это значит, что для анализа проблем устойчивости и управляемости вертолета достаточно рассматривать только установившуюся реакцию несущего винта, пренебрегая переходными режимами махового движения. Такой подход, предложенный Хохенемзе-ром [Н.ПЗ] для исследования устойчивости вертолета, называется квазистатическим представлением динамики несущего винта.  [c.571]

Динамика несущего винта при полете вперед описывается дифференциальными уравнениями с периодическими коэффициентами, но мы видели, что аппроксимация с постоянными коэффициентами в невращающейся системе координат дает хорошее представление махового движения при не очень больших ц. Эта аппроксимация особенно хороша для низкочастотного движения винта. Рассмотрим несущий винт с тремя или более лопастями при полете вперед, когда в качестве степеней свободы достаточно учитывать только угол конусности и наклон плоскости концов лопастей. В уравнениях движения инерционные члены можно принять такими же, как и для режима висения, а аппроксимация с постоянными коэффициентами для аэродинамических членов изложена в разд. П.4 и 11.6. Поскольку искомый результат предназначен для анализа устойчивости и управляемости вертолета, будем использовать связанные оси. Если оставить только члены, содержащие оператор Лапласа нулевого порядка, то уравнения махового движения лопасти при полете вперед приобретают вид  [c.575]

Резюмируя, можно отметить, что динамика продольного движения вертолета характеризуется тремя корнями действительным отрицательным (устойчивое апериодическое движение), который обусловлен в основном демпфированием по тангажу, создаваемым несущим винтом, и двумя комплексными корнями в правой полуплоскости (медленно нарастающие колебания), обусловленными связью отклонения по углу тангажа с поступательным движением посредством производной устойчивости по скорости Ми. Для шарнирногв несущего винта типичное значение действительного корня соответствует времени двойного уменьшения амплитуды ti/2 = 1 -г- 2 с. Комплексным корням соответствует длиннопериодическое движение с частотой 0,05ч-0,1 Гц (период Г =10- 20 с) и временем удвоения амплитуды /г = 3 -f- 4 с. Модули всех трех корней малы по сравнению с частотой оборотов несущего винта, что подтверждает справедливость использования низкочастотной модели. По величине действительный корень близок к корню вертикального движения. Неустойчивость не является большим недостатком, поскольку период и время удвоения амплитуды достаточно велики, что дает летчику возможность управлять этим движением. Однако характеристики управляемости вертолета таковы, что для эффективной стабилизации продольного движения летчик должен реализовать достаточно сложный алгоритм управления.  [c.722]

Для режима висения ( i = О, пв = 0) уравнения сводятся к полученным в разд. 15.3.1. При полете вперед возникают инерционные силы, обусловленные центробежными ускорениями при повороте вектора скорости вертолета относительно связанных осей. Это в основном вертикальное ускорение, вызываемое угловой скоростью тангажа, и поперечное ускорение, создаваемое угловой скоростью рыскания (заметим, что эти силы связывают вертикальное и продольно-поперечное движения). Поскольку задачей анализа является определение характеристик управляемости вертолета при полете вперед, необходимо ввести еще ряд допущений. Будем пренебрегать инерционной взаимосвязью крена и рыскания (/л 2 = 0), а также малыми величинами HtganB и g sinans. Не будем учитывать малые балансировочные эйлеровы углы, что упрощает выражения для угловых скоростей р = (fB, q = г = ifB-  [c.749]

Важными характеристиками управляемости вертолета являются отклонения продольного управления, требуемые для изменения скорости и перегрузки. Статическая устойчивость по скорости имеет место, если отклонению ручки от себя соответствует увеличение скорости, т. е. (36,s/dp, < 0. Этот градиент отклонения ручки непосредственно связан с производной устойчивости по скорости Ма. Обычно при увеличении поступательной скорости вертолета плоскость концов лопастей заваливается назад, и для балансировки вертолета требуется отклонение вперед плоскости управления (разд. 15.1). На малых скоростях полета, однако, некоторые вертолеты имеют неустойчивый градиент отклонения ручки по скорости. Для приемлемых характеристик маневренности при полете вперед требуется положительный градиент отклонения ручки по перегрузке d 0. Анализ, приведенный в предыдущем разделе, показывает, что градиент отклонения управления связан с производными устойчивости по углу атаки М-л и демпфирования Mq и, следовательно, с условием о кривизне кривой нормального ускорения. Для приемлемых характеристик маневренности требуется некоторый минимальный градиент или максимальная эффективность управления.  [c.763]


Хохенемзер [Н.113] в 1939 г. впервые использовал квази-статическую модель винта при исследовании управляемости вертолета в предположении, что движение его как твердого тела происходит с частотами много ниже частоты вращения винта.  [c.775]

Условие о кривизне кривой нормального ускорения было предложено в работе [G.130] на основании летных исследований продольной управляемости вертолета. В этой работе сделан вывод, что наиболее важным для управляемости фактором является ограниченная (не расходяш аяся) реакция вертолета по нормальному ускорению на отклонение управления. Кроме того, желательно непрерывное нарастание нормального  [c.787]


Смотреть страницы где упоминается термин Управляемость вертолета : [c.681]    [c.20]    [c.29]    [c.160]    [c.297]    [c.300]    [c.303]    [c.747]    [c.761]    [c.772]    [c.773]    [c.782]   
Смотреть главы в:

Элементарная теория вертолета  -> Управляемость вертолета



ПОИСК



Вертолет

Общая характеристика, нагружение и обеспечение управляемости рулевым винтом вертолета

Понятие об устойчивости и управляемости вертолета

Управляемость

Управляемость и устойчивость вертолета



© 2025 Mash-xxl.info Реклама на сайте