Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип физический сохранения энерги

Среди физических законов, согласующихся с принципом относительности Галилея, особенное значение имеют законы сохранения импульса, массы и энергии. Эти законы уже знакомы вам по школьному курсу физики, где они формулировались без какой-либо связи с принципом относительности. Согласно закону сохранения энергии, полная энергия Вселенной постоянна, независимо от времени ). Рассматривая эти законы с точки зрения принципа относительности, мы не откроем ничего сверх того, что мы уже знаем. Однако мы выиграем в отношении понимания явлений, и это поможет нам обобщить закон сохранения импульса на релятивистские условия, для которых соотношение F = Afa уже не является точным законом природы. Нашей конечной целью будет нахождение эквивалентов законов сохранения массы, энергии и импульса в условиях движения с релятивистскими скоростями, т. е. со скоростями, сравнимыми со скоростью света с.  [c.88]


Сохранение энергии. Формула (3.4.5), выражающая классический интеграл энергии, играет важную роль во всей механике. Ее значение не ограничивается рамками классической механики и распространяется буквально на все области физических наук. Например, работа, затрачиваемая на растяжение струны, переходит в энергию натянутой струны. Если один конец струны закреплен, а другой соединен с частицей, то при освобождении струны запасенная в ней энергия переходит в кинетическую энергию частицы. Общий закон о сохранении энергии занимает столь важное место в нашем представлении о физическом мире, что, даже встречаясь с динамической задачей, в которой энергия не сохраняется, мы предпочитаем говорить, что энергия не уничтожается, а переходит в другую форму, отличную от кинетической или потенциальной энергии механической системы (например, в тепло). Тем не менее, несмотря на всеобъемлющий характер этого принципа для физики в целом, не следует придавать уравнению (3.4.5) большее значение, чем оно имеет в действительности. Мы будем рассматривать его как чрезвычайно простой первый интеграл уравнений движения.  [c.47]

Названные исследователи сначала применили принцип наименьшего действия лишь к механике весомых тел и представляли при помощи этого принципа либо движение системы совершенно свободных материальных точек, либо системы материальных точек, подчиненных жестким связям. Физические предположения, из которых они исходили, в основном заключались в законах движения Ньютона и том способе, каким обычно в механике в соответствии с опытом определяли действие неизменяемых связей, наложенных на материальные точки. Однако позже, когда научились правильно обращаться с интегралом Мопертюи, выяснилось, что нужна также предпосылка о справедливости закона сохранения энергии ). Сначала это казалось существенным ограничением области пригодности принципа наименьшего действия, пока новейшие физические исследования не показали, что закон сохранения энергии имеет всеобщую значимость, так что упомянутое кажущееся ограничение на деле ничего не ограничивает. Нужно только для исследуемого явления знать полностью все формы, в которых проявляются эквиваленты энергии, чтобы включить их в расчеты. С другой стороны, казалось спорным, могут ли быть подведены под принцип наименьшего действия другие физические процессы, которые не сводятся непосредственно к движению весомых масс и ньютоновым законам, процессы, в которых, однако, фигурируют известные количества энергии.  [c.430]


Трудности, возникшие перед физикой, стремившейся свести все многообразие физических явлений к механическому движению, послужили одной из причин назревавшего в конце XIX в. кризиса в физике, выразившегося, в частности, в появлении направлений, проповедовавших отказ от объяснения явлений и переход к чистому описанию. В физике конца XIX в. эту идею провозгласил так называемый энергетизм. Энергетики пытались построить всю физику на основе понятия энергии (исключив вещество с его сложной атомистической структурой), опираясь на закон сохранения энергии и принцип Гамильтона. Больцман подверг критике допущенные энергетиками научные ошибки, а Ленин — их философскую концепцию. Крах энергетики показал, что построить физику чисто феноменологически нельзя. Тот факт, что и энергетики, и их противники пользовались принципом Гамильтона, показывает, что один и тот же математический аппарат может служить для оформления различных физических картин. Физическая картина мира может строиться при помощи принципа Гамильтона, но не может быть из него выводима (если не знать заранее, что требуется получить).  [c.852]

Математическая теория теплопроводности строится на основе дифференциального уравнения, называемого уравнением Фурье. С физической точки зрения это уравнение представляет собой принцип сохранения энергии, сочетаемый с законом Фурье.  [c.17]

Отметим, что понятие ценности точечного источника позволяет выводить уравнение для ft (г, т), исходя непосредственно из физического смысла этой величины, на основе принципа сохранения ценности [94, 53, 12], точно так же, как это делается для основных уравнений, например, из закона сохранения энергии. В том случае, когда основное уравнение является векторным сопряженное уравнение также векторное (т. е. fp и Р — векторы,  [c.19]

При выводе дифференциального уравнения Фурье не принимались во внимание какие бы то ни было конкретные условия процесса. В основе вывода лежат только общие физические принципы закон сохранения и превращения энергии и закон Фурье. Поэтому уравнение (9) дает наиболее общую связь между входящими в него переменными и определяет все без исключения явления теплопроводности, т. е. определяет весь класс этих явлений.  [c.15]

В 1842 г. немецкий врач Р. Майер формулировал принцип эквивалентности тепла и работы как частное выражение закона сохранения и превращения энергии. Джоуль в результате ряда экспериментальных работ в 1843 г. подтвердил этот принцип. В 1847 г. появилась работа Гельмгольца, в которой принцип эквивалентности теплоты и механической работы распространяется на все физические явления и завершается формулировкой универсального закона сохранения энергии.  [c.54]

Моисеев [7] на основе рассмотрения механизмов развития живой природы сформулировал принцип минимума диссипации энергий в неживой материи Если множество устойчивых движений или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит более чем из одного элемента, т.е. они не выделяют единственного движения или состояния, то заключительный этап отбора реализуемых движений или состояний определяется минимумом диссипации энергии (или минимумом роста энтропии) . Это гипотетическое утверждение Моисеев назвал принципом минимума диссипации энергии. Опытные данные подтвердили, что существует определенный класс явлений в неживой природе, для которых этот принцип является важнейшим. Применительно к живой природе этот принцип отражает стремление синергетической системы в максимальной степени использовать энергию и вещество.  [c.13]

Члены этого уравнения, содержащие матрицу VK, имеют простой физический смысл. Третий член в левой части описывает процесс столкновения двух частиц, причем в матрице взаимодействия (4.3.15), благодаря матрице (7, учитываются квантовые статистические эффекты в промежуточных состояниях (для фермионов — принцип Паули). Правая часть уравнения (4.3.41) соответствует борновскому приближению для двухчастичного рассеяния. Многочастичные корреляции, связанные с сохранением энергии, учитываются в уравнении (4.3.41) посредством источника, который определяет граничное условие для корреляционной матрицы.  [c.291]


Николай Егорович считал механику могущественной наукой. В подготовленной им актовой речи на тему Старая механика в новой физике , произнесенной 3 марта 1918 г. в Московском математическом обществе, утверждается К концу прошлого века механика, идущая по своему победоносному пути в разрешении различных проблем естествознания, достигает своего апогея. Блестящие успехи астрономии и небесной механики, многочисленные приложения в области физики и химии, установление всеобъемлющего принципа сохранения энергии и успехи колебательной теории света утверждают ту мысль, что всякое физическое явление может считаться тогда вполне объясненным, когда оно получает полное механическое толкование .  [c.127]

Наиболее распространены прочностные характеристики, и поэтому большая часть существующих методов расчетов и испытаний оценивает прочность материалов, конструкций и их элементов. Однако с физической точки зрения энергетические характеристики имеют важные преимущества перед прочностными. В связи с дополнительными соотношениями, которые вытекают из закона сохранения энергии, можно рассчитать энергетический баланс процессов деформации и разрушения можно определить направление (тенденцию) процесса из вариационных принципов, устанавливающих признаки действительного движения или состояния системы по сравнению со всеми другими кинематически возможными движениями или состояниями.  [c.67]

И дальше Каждое новое открытие и каждое новое понятие всегда вновь приводили к установлению и закреплению центрального положения за принципом сохранения энергии. Отдельные сомнения и колебания по вопросу о всеобщей справедливости принципа сохранения энергии, возбуждавшиеся то здесь, то там некоторыми определенными фактами, как, например, постоянной отдачей теплоты радиоактивными субстанциями, легко оказались недоразумениями, и, насколько я знаю, никогда не была сделана даже попытка построить физическую теорию, в фундаменте которой принцип сохранения энергии не нашел бы себе места .  [c.396]

Отдельные сомнения и колебания по вопросу о всеобщей справедливости принципа сохранения энергии, возбуждавшиеся то здесь, то там некоторыми определенными фактами, как, например, постоянной отдачей теплоты радиоактивными субстанциями, легко оказывались недоразумениями, и, насколько я знаю, никогда не была сделана даже попытка построить физическую теорию, в фундаменте которой принцип сохранения энергии не нашел бы места .  [c.601]

Критикуя в статье Единство физической картины мира взгляды Маха, Планк по существу отстаивает принципы материалистической философии. Планк пишет Является ли физическая картина мира только более или менее произвольным созданием нашего ума или же, наоборот, мы вынуждены признать, что она отражает реальные, совершенно не зависящие от нас явления природы Выражаясь конкретнее, имеем ли мы разумные основания утверждать, что принцип сохранения энергии существовал в природе еще тогда, когда ни один человек не мог думать о нем, или что небесные тела будут по-  [c.608]

Для малой окрестности физической точки (частицы) среды установлены дифференциальные и интегральные уравнения сохранения массы, импульса (уравнения движения), сохранения энергии, баланса энтропии (уравнение притока тепла), а также уравнения, связывающие тензор напряжения и вектор теплового потока с деформациями, температурой и немеханическими заданными параметрами. Эти соотношения в принципе определяются, и притом однозначно, непосредственно в -опытах для всех возможных в частице процессов поскольку все входящие в эту сис тему равенств параметры измеряются приборами и системе удовлетворяют, группа параметров, названная реакцией (г), однозначно определяется группой процесса (я). Следовательно, для малой частицы решение суи ествует r(t)—г n(x)). Поэтому перечисленная система уравнений в МСС называется замкнутой для всех внутренних точек области движения среды.  [c.157]

Природа процесса конвективного теплообмена состоит в переносе теплоты за счет конвекции жидкости и теплопроводности в ней. К физическим законам, которые управляют этим процессом, относятся закон сохранения энергии, основной закон динамики, закон сохранения массы (принцип неразрывности жидкости), а также закон теплопроводности Фурье и закон вязкого трения Ньютона. Процесс, подобный данному, должен иметь ту же физическую природу и подчиняться тем же законам — он, как и натурный процесс, должен быть процессом конвективного теплообмена.  [c.230]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]


С физической точки зрения минимальная мощность, необходимая для движения тела с данной скоростью V, определяется сопротивлением среды, эффективностью способа передвижения, потребляемой энергией того частного типа силового движителя , который обеспечивает механическую мощность, и многими другими факторами. Принцип сохранения энергии можно выразить в виде соотношения  [c.94]

С физической точки зрения ортогональность есть следствие принципа суперпозиции и закона сохранения энергии. В идеальной механической системе энергия слагается из потенциальной и кинетической. Пусть существуют свободные колебания по одной из возможных форм Uiy  [c.141]

Это утверждение часто формулируют в виде принципа невозможности Никакими механическими опытами нельзя установить выделенное положение какой-либо одной инерциальной системы отсчета относительно всех остальных. Такие принципы невозможности удобны для формулировки фундаментальных физических положений — можно напомнить читателю формулировку закона сохранения энергии в форме принципа невозможности построения вечного двигателя первого рода.  [c.140]

В процессе осмысливания множества фактов, частных законов возникают обобщения, которые отражают в себе сущность и единство рассматриваемых явлений. Выдвигается система постулатов, выражающих ядро теории. Под ядром теории понимаются общие законы или принципы, которые определяют связи между физическими величинами, устанавливая изменение последних во времени и в пространстве. Как правило, ядро современной теории составляет система дифференциальных уравнений. Например, ньютонова механика основана на трех постулатах (законах Ньютона) и принципе суперпозиции сил. Все эти положения имеют математическую форму. В ядре физической теории особая роль принадлежит законам сохранения энергии, импульса, момента импульса, а также ряда других величин. Основные уравнения теории должны быть согласованы с законами сохранения — только при этом уравнения правильно отражают природу. В ядро входят положения об инвариантности основных уравнений по отношению к некоторым преобразованиям, основные константы теории.  [c.10]

Эти уравнения можно разделить на две различные группы. В первую группу мы включаем те уравнения, которые представляют физические закономерности, выполняющиеся для любого материала. Эти уравнения называются уравнениями баланса, так как они представляют математическую формулировку принципов сохранения. Имеются в основном четыре уравнения баланса, выражающих принципы сохранения массы, импульса, момента импульса и энергии.  [c.11]

Затишье перед бурей. XIX столетие ознаменовалось целым рядом достижений в физике. К ним относятся достижения в области электричества и магнетизма, которые привели к теории электромагнитного поля Максвелла и позволили включить оптику в рамки электромагнитных явлений значительный прогресс в развитии классической механики, которая достигла особой стройности и законченности благодаря блестящим математическим исследованиям разработка универсальных физических принципов, среди которых на первое место следует поставить закон сохранения и превращения энергии. Неудивительно, что к концу века стало складываться убеждение в том, будто физическое описание законов природы близко к окончательному завершению.  [c.34]

Таким образом, сила тяжести, как и любая другая сила, по Декарту, есть результат движения материи, а не свойство тела. Отождествляя тонкую материю с пространством, можно было бы сказать на современном языке, что тяготение у Декарта становится свойством пространства. У Гильберта и Кеплера сила тяготения была присуща самим телам, у Галилея (а затем и у Ньютона) она тоже не сводится к свойствам пространства и времени. Вместе с тем механицизм Декарта противостоял и атомизму, согласно которому именно атомы создают поля сил, а их скрытые движения объясняют все физические процессы. Важно еще отметить, что термин сила Декарт применяет в значении действия, то есть энергии или работы, широко используя принцип сохранения последней как закон, не нуждающийся в доказательстве. Декартова сила зависит от величины силы в современном ее значении (как меры взаимодействия тел) и от проекции пройденного пути на направление действия силы. Поэтому сила , служащая для подъема груза, имеет оба эти измерения, а сила, служащая для его поддержания, — одно. ...Эти силы, — пишет Декарт,— отличаются друг от друга настолько же, насколько поверхность отличается от линии . В результате он доказывает , что сила , способная поднять груз в 2 кг на  [c.73]

Для Клаузиуса принцип возрастания энтропии — это универсальный физический закон, не знающий никаких ограничений. Этот закон стоит рядом с законом сохранения и превращения энергии и вместе с ним определяет судьбы мира. Энергия мира остается постоянной. Энтропия мира стремится к максимуму. В этих двух фразах содержится предельно сжатое, но вполне отчетливое изложение космологических выводов, с необходимостью вытекающих из системы взглядов Клаузиуса.  [c.138]

При таком понимании подлинное значение принципа возрастания энтропии определяется с большой отчетливостью. Это — частная закономерность, справедливая при определенных физических условиях. В других условиях должен быть справедлив прямо противоположный принцип — принцип убывания энтропии. Только такое соединение прямого и обратного принципа — принципа возрастания энтропии и принципа убывания энтропии — совместимо с законом сохранения и превращения энергии, совместимо с уверенностью ...что материя во всех своих превращениях остается вечно одной и той же, что ни один из ее атрибутов никогда не может быть утрачен... >.  [c.139]

При установлении основных физических закономерностей процесса теплопроводности рассматривались закон сохранения тепловой энергии и закон Фурье. Основные физические закономерности конвективного теплообмена могут быть установлены на основании предыдущих законов, а также законов, описывающих движение жидкости. К последним относится основной закон динамики (второй закон динамики Ньютона) и закон сохранения массы (принцип неразрывности жидкости). Два этих закона позволяют найти поле скорости жидкости.  [c.215]

В основе термодинамического подхода, наиболее общего к исследованию процессов, лежат законы сохранения и превращения энергии (первое начало термодинамики) и принцип увеличения энтропии при необратимых процессах (второе начало термодинамики). Абстрагируясь от физической структуры материалов и процессов, протекающих в трибосистеме, термодинамика оперирует энергетическими показателями и критериями, базирующимися на этих показателях.  [c.151]

Н.Н, Моисеевым [19] с учетом механизма развития живой природы сформулирова г принцип минимума диссипации энергии в живой материи. Он гласит если множество устойчивых движений, или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит бо.чее чем из одного элемента, т.е. они не выде.пяют единственного движения или состояния, то заключительный этап отбора реализуемых движений или состояний определяется минимумом диссипации энергии (или минимума роста энтропии).  [c.28]

РТГ исходит из строгого выполнения законов сохранения энергии-импульса и момента количества движения вещества и гравитационного поля (что с необходимостью приводит к псевдоевклидову миру Минковского) и из представления о гравитационном поле как физическом поле, источником которого является тензор энергии-импульса всей материи (вещество и гравитационное поле) и которое, в принципе, даже локально не может быть уничтожено выбором системы отсчета.  [c.160]


Теперь обратим внимание на следующее d виде основной предпосылки наших механических взглядов все причины, влияющие на дви-/ление какой угодно м атериальной системы, схематически рассматриваются нами как некоторые силы, и, следовательно, всякая форма энергии, которая участвует в движении, рассматривается схематически в виде сообщаемой системе работы, совершаемой силами. Поэтому если, в частности, речь идет об элементе времени dt, то полная элементарная работа dL, так же как и в случае одной материальной точки (т. I, гл. VIII, п. 9), представится как полное приращение энергии, сообщаемое системе обстоятельствами, определяющими ее движение. Уравнение (22) представляет, следовательно, в типичной механической форме основной физический принцип сохранения энергии. Оно выражает, что вся энергия, сообщаемая в любой элемент времени системе теми весьма разнообразными обстоятельствами, которые каким бы то ни было образом влияют на ее движение, обнаруживается полностью в TOii же системе в форме приращения dT ее кинетической энергии.  [c.279]

Oh не захотел делать никаких предположений ни относительно внутреннего строения светоносного эфира, ни о характере взаимодействия молекул и принял лишь гипотезу, что свойства эфира подчиняются принципу сохранения энергии. Он утверждает Если... мы столь совершенно несведущи о способе взаимодействия между собой элементов светоносного эфира..., то, казалось бы, более осторожным методом было бы положить в основу наших рассуждений какой-либо общий физический принцип, чем постулировать какие-то определенные формы взаимодействия, которые в конечном счете могли бы оказаться весьма отличными от того механизма, который применен самой природой, в особенности, если этот принцип заключает в себе как частные случаи те, которые приняты Коши и другими, и приводит, сверх того, к более простой вычислительной процедуре. Принцип, принятый в качестве основы для рассуждения, содержащегося в предлагаемой статье, таков каким бы образом элементы данной материальной системы ни действовали бы друг на друга, полная сумма произведений внутренних сил на элементы тех направлений, по которым они действуют, для каждой заданной части массы должна быть всегда равна полному дифференциалу некоторой функции . Если мы обозначим эту функцию через <р и сочетаем принцип Далам-бера с принципом возможных перемещений, то получим уравнения движения для случая, когда внешние силы отсутствуют, из уравнения  [c.264]

В настоящей монографии показано, что решение сверхзадачи получения неорганических материалов с функциональными свойствами, подобными биосистемам, требует использования принципов минимума диссипации энергии (принцип Н Н. Моисеева), принципа минимума производства энтропии (Гленсдорфа-Пригожина), принципа иерархической термодинамики (Г.П. Гладышева), теории В.Е. Панина о генетическом коде устойчивости атома, заложенного в его электронном спектре. Использование указанных принципов и универсальных свойств среды, потерявшей устойчивость симметрии системы, позволило создать универсальный алгоритм самоуправляемого синтеза структур при эволюции физических систем, рассматривающий эволюцию системы только на основе использования дискретных значений управляющих параметров при переходах от одной точки бифуркаций к другой. Универсальность связана с тем, что удалось установить самоподобие связи между мерой (Aj) устойчивости симметрии системы и двоичным кодом обратной связи (т), обеспечивающей сохранение симметрии системы. Показано, что независимо от типа системы, переход от локальной адаптации системы к внешнему возмущению к глобальной, связь между Ai и m определяется функцией самоподобия F, представленной в виде  [c.12]

Этот общий результат был назван Клаузиусом при нципом возрастания энтропии и использован при построении системы термодинамики его имени. По Клаузиусу в основе термодинамики лежат два фундаментальных физических принципа — закон сохранения и превращения энергии и закон возрастания энтропии. В системе Клаузиуса — это два равноправных, друг друга дополняющих принципа. Они представляют собой два начала термодинамики, в равной мере необходимых для ее обоснования.  [c.138]

Не могли не повлиять на учебники по термодинамике опубликованные за рассматриваемые годы классические зарубежные сочинения и учебники по термодинамике. Некоторые из этих учебников будут рассмотрены в 5-7, здесь же отметим некоторые сочинения М. Планка, глубоко освещающие многие положения и вопросы термодинамики одна из первых работ Планка была посвящена принципу сохранения энергии четвертое издание этой работы было <щубликовано на русском языке в 1934 г. Физические очерки (на русском языке эта работа была издана в 1925 г.) Введение в теоретическую физику, ч. 5 — теория теплоты (на русском языке в 1935 г.) Обоснования второго закона термодинамики . Об этих сочинениях подробно говорится ниже. Здесь следует также сказать о сочинениях Второе начало термодинамики . Сборник работ Карно, Томсона, Клаузиуса, Больцмана и Смолуховского, 1934 и Роберт Майер, Закон сохранения энергии, 1938.  [c.219]

Сочинение М. А. Леонтовича имеет следующие построение и содержание Раздел 1 — Основные понятия и положения термодинамики (состояние физической системы и определяющие его величины работа, соверщаемая системой адиабатическая изоляция и адиабатический процесс закон сохранения энергии для адиабатически изолированной системы закон сохранения энергии в применении к задачам термодинамики в общем случае (первое начало термодинамики) количество тепла, полученное системой термодинамическое равновесие температура квазистатические (обратимые) процессы теплоемкость давление как внешний параметр энтальпия обратимое адиабатическое расширение или сжатие тела применение первого начала к стационарному течению газа или жидкости процесс Джоуля—Томсона второе начало термодинамики формулировка основного принципа).  [c.364]

Важную роль в установлении точной количественной формулировки закона сохранения энергии сьп рал знаменитый немецкий естествоиспытатель, врач, физик и философ Герман Людвиг Фердинанд Гельмгольц. В 1847 г. он выступил в Берлине на заседании недавно образованного Физического общества со своим знаменитым докладом О сохранении сильп>, где он высказался и о вечном движении Вообразим себе систему тел природы, которые состоят в известных пространственных взаимоотношениях друг с другом и начинают двигаться под действием своих взаимных сил до тех пор, пока они не придут. в определенное другое положение мы можем рассматривать приобретенные ими скорости как результат определенной механической работы и можем выразить их через работу. Если бы мы захотели, чтобы те же силы пришли в действие во второй раз, совершая еще раз ту же работу, то мы должны бы были привести тела каким бы то ни было образом в первоначальные условия, применяя другие силы, которьпии мы можем располагать. Мы на это затратим определенное количество работы приложенных сил. В этом случае наш принцип требует, чтобы количество работы, которое получается, когда тела системы переходят из начального положения во второе, и количество работы, которое затрачивается, когда они переходят из второго положения в первое, всегда было одно и то же, каков бы ни был способ перехода, путь перехода или его скорость.  [c.180]

Возможно, что немало физических явлений, кроме перечисленных, может быть призвано на помощь для решения рассматриваемого вопроса. Но необходимо учесть, что все эти явления могут играть только второстепенную, побочную роль основными для данного вопр оса являкяся, конечно, явления распространения световой энергии по законам оптики и фотометрии. Они — и только они — решают однозначно поставленную перед нами задачу и, как мы видели, не оставляют никакой надежды ца возможносты с помощью одних оптических систем, расположенных далеко от цели, добиться достаточно большого нагревания последней. Надо помнить, что эти выводы вытекают непосредственно из самых общих законов физики, например принципа сохранения энергии их достоверность по этой причине не уступает достоверности последнего, никем не оспоримого при нципа. Еще не пришло время для таких орудий оно придет только тогда, когда будут найдены совершенно новые источники света, в десятки и сотни тысяч раз мощнее современных.  [c.31]

Гюйгенс рассмотрел и более трудную задачу о колебаниях физического маятника. Он определил центр колебаний физического маятника и ег период. При этом знаменателен принцип, которым пользуется Гюйген и который отражает уровень знаний того времени о законе сохранения энергии Если любое число весомых тел приходит в движение благодар их тяжести, то общий центр тяжести этих тел не может подняться выше, чем он был в начале движения . И далее Если бы изобретатели новы  [c.23]

Однако работ, в которых бы формулировались и исследовались общие принципы классификации, известно мало (см., например, [34, 35]). И вместе с тем множество трудов посвящено непосредственно разработке классификаций наук, форм движения, видов взаимодействий, физических явлений, а в последнее время — элементарных частиц. Классификации же видов энергии ни философы, ни физики, ни инженеры внимания не уделяли, если не считать произвольных перечислений видов энергии, приводимых с начала XIX в. Гровом, Ренкиным, Майером, Гельмгольцем, Планком и авторами многочисленных учебников но физике, начиная с Хвольсона и кончая Фейнманом. Даже само понятие классификация видов энергии употребляется очень редко. В качестве примеров таких работ можно назвать Лекции по термодинамике К. А. Путилова, изданные впервые в 1939 г. [36], и монографию О законе сохранения и превращения энергии Р. Г. Геворкяна, изданную в 1960 г. [37]. Однако в первой книге нет обоснования приводимых перечислений видов энергии для различных наук, а во второй книге при наличии обоснований и даже закона сохранения вида энергии нет... классификации.  [c.22]



Смотреть страницы где упоминается термин Принцип физический сохранения энерги : [c.921]    [c.236]    [c.369]    [c.65]    [c.87]    [c.115]    [c.163]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.279 ]



ПОИСК



Принцип сохранение энергии

Принцип энергии

Сохранение

Сохранение энергии



© 2025 Mash-xxl.info Реклама на сайте