Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центр колебаний физического маятник

Если отложить вдоль прямой ОС от точки О приведенную длину физического маятника а, то получим точку 0 , называемую центром колебаний физического маятника. Эта точка обладает рядом важных свойств, которые будут отмечены ниже.  [c.74]

Теорема о центре колебаний физического маятника  [c.86]

Теорема о связи между моментами инерции относительно параллельных осей дает возможность доказать важную теорему о центре колебаний физического маятника, найденную X. Гюйгенсом ).  [c.86]


Сравнивая найденное выражение СК с формулой (1. 102), видим, что точка К является центром колебаний физического маятника, у которого ось  [c.410]

Следовательно, ось Ог не подвергается удару, если она является главной осью инерции, ударный импульс перпендикулярен к ней и точка его приложения лежит в -одной плоскости с осью вращения и центром инерции тела. Расстояние точки приложения импульса S от оси вращения Ог определяется формулой (III. 101). Сравнивая ее с формулой (1.85), приходим к выводу, что при отсутствии импульсов динамических реакций точкой М приложения ударного импульса S является центр колебаний физического маятника с моментом инерции относительно оси вращения, равным 1 , и расстоянием центра инерции от оси вращения, равным ус- Точка М называется центром удара.  [c.474]

Длина li такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка К, отстоящая от оси подвеса на расстоянии OK=h, называется центром качаний физического маятника (см. рис. 324).  [c.327]

Следствие 6.4.1. Уравнение колебаний физического маятника совпадает с уравнением колебаний математического маятника (определение 3.9.1), вся масса которого сосредоточена в центре качания. Теория движения математического маятника может быть полностью применена к анализу движения физического маятника.  [c.458]

Если от точки Oi отложить отрезок /i = I, то получим точку О, т. е. центр качаний и точка привеса взаимны. Периоды малых колебаний физических маятников вокруг горизонтальных осей, проходящих через точку привеса и цеЕ тр качаний, одинаковы.  [c.453]

Важное прикладное значение теории малых колебаний физического маятника состоит в том, что ее можно положить в основу экспериментального определения моментов инерции тел. Для опытного определения момента инерции тела силой тяжести Р относительно какой-либо оси достаточно сделать эту ось горизонтальной осью привеса, определить период малых колебаний тела вокруг этой оси и расстояние от точки привеса до центра масс. Тогда согласно (53) момент инерции относительно горизонтальной оси привеса определится по формуле  [c.453]

По экспериментально определенному периоду малых колебаний физического маятника можно вычислить его момент инерции относительно оси подвеса этим пользуются при экспериментальном определении моментов инерции тел. Зная расстояние от оси подвеса до центра тяжести тела, найдем момент инерции тела относительно оси, параллельной оси подвеса и проходящей через центр тяжести С. Вычисление проводится по формуле (57), из которой по известным 7 и s находим р , а потом 4с  [c.180]


Работы Галилея по динамике были продолжены и развиты знаменитым голландским ученым Гюйгенсом (1629—1695), который создал теорию колебаний физического маятника, введя при этом понятия о центре качаний, о приведенной длине физического маятника и о моменте инерции тела относительно оси. Кроме того, Гюйгенс обобщил введенное Галилеем понятие ускорения на случай криволинейного движения точки и установил понятие о центростремительной и центробежной силах. Ряд его работ относится к теории удара упругих твердых тел.  [c.14]

Длина L такого математического маятника, период малых колебаний которого равен периоду малых колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка О1, отстоящая от точки подвеса О на расстоянии 001= Д, называется центром качаний физического маятника (рис. 379).  [c.684]

Физический маятник, так же как математический, обладает свойством изохронности, пока отклонения малы. Период колебаний физического маятника существенно зависит не только от расстояния от оси вращения до центра тяжести, но и от момента инерции маятника относительно оси, т. е. от расположения отдельных элементов массы маятника.  [c.409]

Так как период маятника зависит от g, то маятником можно пользоваться для определения величины g. При точных измерениях, конечно, уже ни один реальный маятник нельзя рассматривать как математический. Поэтому при точных измерениях силы тяжести для периода физического маятника пришлось бы пользоваться формулой (13.21). Но расчет момента инерции маятника также не может быть произведен с большой точностью. Для устранения этих трудностей используют свойство центра качаний, которое заключается в следующем. Если мы перенесем точку подвеса физического маятника в центр качаний, то прежняя точка подвеса окажется новым центром качаний. Точка подвеса и центр качаний обратимы. Поэтому период колебаний физического маятника остается прежним (так как прежней осталась приведенная длина).  [c.409]

Замечание Лагранжа относится и к проблеме маятника. Маятник Галилея, т. е. математический маятник, реально воплощался телом, которое могло вращаться вокруг неподвижной оси,— физическим маятником. Изохронность колебаний маятника, пусть не совсем точную, естественно было использовать для измерения времени. Достаточно точное измерение времени с помощью прибора, который можно было бы перевозить с собой на корабле, решало проблему определения долгот на море — в то время основную проблему кораблевождения в открытом море. Создать достаточно точные и пригодные в морских путешествиях маятниковые часы пытался еще Галилей, он даже вступил с нидерландскими властями в переговоры об использовании маятниковых часов. Галилей не добился достаточно хороших результатов и, таким образом, оставил открытыми две проблемы теоретическую — о центре качаний физического маятника, т. е. о приведенной длине физического маятника, и техническую — проблему маятниковых часов.  [c.254]

Собственные колебания физического маятника, т. е. тяжелого тела, свободно вращающегося вокруг некоторой оси, будут происходить так же, как и колебания рассмотренного выше математического маятника. Пусть тело А (рис. 347) свободно вращается вокруг горизонтальной оси О, перпендикулярной к чертежу. Расстояние от центра масс до оси равно а тогда при повороте тела от положения равновесия на угол а возникнет возвращающий момент силы тяжести, равный  [c.425]

Всегда можно подо-рать такой математический маятник, период колебаний которого будет равен периоду колебаний данного физического маятника. Через центр тяжести физического маятника проведем прямую, перпендикулярную к оси подвеса, и на этой прямой отложим от оси отрезок, равный длине / пО добранного математического маятника. Мы получим точку, которая и называется центром качания физического маятника. Расстояние от центра качания до оси подвеса, равное длине I  [c.236]


Другим примером являются колебания физического маятника — тела произвольной формы массы от, закрепленного на горизонтальной оси О так, что его центр масс находится в точке О, удаленной от оси на расстояние а. При отклонении маятника от вертикали на небольшой угол а он будет совершать свободные гармонические колебания под действием силы тяжести, приложенной к центру масс (рис. 1.2).  [c.8]

Период колебаний физического маятника (а, следовательно, и его приведенная длина I) немонотонно зависит от расстояния а. Это легко заметить, если в соответствии с теоремой Гюйгенса-Штейнера момент инерции J выразить через момент инерции относительно параллельной горизонтальной оси, проходящей через центр масс J = J + та . Тогда период колебаний (1.14) будет равен  [c.9]

Рассмотрим колебания физического маятника, представляющего собой тело с моментом инерции I, вращающееся вокруг оси, проходящей через точку О. Центр тяжести тела находится в точке С, расстояние которой от оси вращения O =d (рис.5). При малых отклонениях от положения равновесия энергии физического маятника может быть записана в виде  [c.121]

Начальная фаза колебания в формуле (36.14) обозначена буквой а. ) Таким образом малые колебания физического маятника в хорощем приближении являются гармоническими, а их круговая частота зависит от массы т маятника, его момента инерции / относительно оси вращения и от расстояния г между осью вращения и центром тяжести маятника. Амплитуда А и начальная фаза а определяются через начальные данные, т.е. значения угла и угловой скорости в начальный момент времени >(0) = Ро и ПД0) = П(, по формулам, аналогичным (36.6) (угловая скорость здесь обозначена буквой П, чтобы не спутать с круговой частотой колебаний а>).  [c.117]

В сейсмографах — приборах для регистрации землетрясений— применяется физический маятник, ось подвеса которого образует угол а с вертикалью. Расстояние от оси подвеса до центра масс маятника равно а, момент инерции маятника относительно оси, проходящей через его центр масс параллельно оси подвеса, равен /с, масса маятника равна М. Определить период колебаний маятника.  [c.287]

Два одинаковых физических маятника подвешены па параллельных горизонтальных осях, расположенных в одной горизонтальной плоскости, и связаны упругой пружиной, длина которой в ненапряженном состоянии равна расстоянию между осями маятников. Пренебрегая сопротивлением движению и массой пружины, определить частоты и отношения амплитуд главных колебаний системы при малых углах отклонения от равновесного положения. Вес каждого маятника Р радиус инерции его относительно оси, проходящей через центр масс параллельно осп подвеса, р жесткость пружины с, расстояния от центра масс маятника и от точки прикрепления пружины к маятникам до оси подвеса равны соответственно I и Н. ( м. рисунок к задаче 56.4,)  [c.418]

Теорема 6.4.1. (Гюйгенс). Точка подвеса физического маятника и центр качания суть точки взаимные. Если центр качания принять за точку подвеса, то прежняя точка подвеса будет центром качания. Период колебаний маятника при этом не изменится.  [c.459]

Центральный радиус инерции физического маятника составляет 0,05м. Каким должно быть расстояние между точкой подвеса и центром масс маятника, чтобы период его малых колебаний составил 1 с Сколько решений имеет задача Как практически можно реализовать эти решения  [c.520]

Если перенести ось вращения физического маятника параллельно своему первоначальному положению в центр колебаний, то приведенная длина физического маятника не изменится.  [c.86]

Теперь докажем теорему о центре колебаний. Допустим, что ось вращения перенесена параллельно ее первоначальному положению из точки О в точку О1. Вычислим новую приведенную длину физического маятника й[ и докажем, что она равна а, используя при этом соотнощение (I. 102).  [c.87]

Величины S и s входят в эти соотношения симметрично. Поэтому данную длину / эквивалентного математического маятника, или, что то же, данный период колебаний Т можно получить, поместив ось подвеса на расстоянии s пли на расстоянии s от центра тяжести тела в первом случае ось качаний будет находиться на расстоянии s = I — s, а во втором — на расстоянии. S == -s от центра тяжести. Иными словами, ось качаний станет во втором случае осью подвеса, а ось подвеса—осью качаний. Это свойство физического маятника используется в оборотном маятнике, служащем для определения ускорения силы тяжести g. Построение отрезка s по известным s и п показано на рис. 301.  [c.180]

Геометрическим местом точек подвеса физического маятника, для которых период колебаний маятника один и тот яге, являются, как отсюда следует, две окружности с центрами в точке G II с радиусами 0G и O G (рис. 130). Если Z > р, то имеем маятник если <р — коромысло.  [c.180]

Для случая нескольких масс решение будет аналогичным. Кроме идеи сведения изучения движения тела к изучению его равновесия с учетом сил инерции, Я. Бернулли высказал мысль о возможном определении реакции связи. Истинное движение 161 ( 2 2) он разложил на свободное а 0 а2Я) и движение O l Qb2) вдоль стержня. Каждому движению он ставит в соответствие силу. Вертикальному движению alO a2Q), естественно, соответствует сила тяжести, а сила, соответствующая движению вдоль стержня, уравновешивается опорой А. По современным представлениям — реакцией связи. Ученик Я. Бернулли — Якоб Германн дал иную интерпретацию идеи использования сил инерции. В наиболее известном сочинении Форономия или две книги о силах и движениях твердых и жидких тел [200], решая задачу о нахождении центра колебаний физического маятника, он разлагает силу тяжести каждой материальной точки на две составляющие одна направлена по линии подвеса, другая — перпендикулярно  [c.137]


Гюйгенс рассмотрел и более трудную задачу о колебаниях физического маятника. Он определил центр колебаний физического маятника и ег период. При этом знаменателен принцип, которым пользуется Гюйген и который отражает уровень знаний того времени о законе сохранения энергии Если любое число весомых тел приходит в движение благодар их тяжести, то общий центр тяжести этих тел не может подняться выше, чем он был в начале движения . И далее Если бы изобретатели новы  [c.23]

Следовательно, не изменится период колебаний физического маятника. Новый центр колебаний перейдет в точку пересечения О первоначальной осп вращения с иерпендикулярной плоскостью, проведенной через центр инерции С маятника (рис. 16).  [c.86]

Голландский ученый механик, физик и математик Христиан Гюйгенс (1629-1695) впервые решил задачу об определении центра качаний физического маятника. Согласно этой задаче, между центром качаний и точкой подвеса существует зависимость если физический маятник перевернуть и сделать центр качаний точкой подвеса, то прежняя точка подвеса сделается центром качаний и маятник будет качаться так же, как и ранее, Задача 9.65. На каком расстоянии от центра масс должен быть подвешен физический маятник, чтобы период его малых колебаний был наименьшим (Foppl).  [c.279]

Для современников основным произведением Гюйгенса была книга Маятниковые часы (1673 г.) Это классическое произведение по богатству и ценности содержания имеет мало себе равных. Прежде всего, оно, в соответствии со своим названием, содержит (в первой части) описание великого изобретения Гюйгенса — маятниковых часов. Разрабатывая теорию математического маятника, Гюйгенс показал неизохронность колебаний кругового маятнйка и для него разработал метод расчета периода колебаний, равносильный приближенному вычислению соответствующего эллиптического интеграла. Гюйгенс строго доказал точную изохронность колебаний (любой амплитуды) циклоидального маятника, дал формулу для вычисления периода этих колебаний, а также и для периода малых колебаний кругового маятника, разработал и осуществил конструкцию циклоидального маятника. В связи с этим Гюйгенс создал новый раздел дифференциальной геометрии — учение об эволютах и эвольвентах. Он изобрел часы с коническим маятником. Попутно Гюйгенс открыл явление параметрического резонанса (наблюдая установление консонанса двух маятников, прикрепленных на одной балке) и правильно объяснил его. Кроме того, в Маятниковых часах изложены многочисленные математические результаты, как, например, спрямление многих кривых, определение площадей некоторых кривых поверхностей, метод построения касательных к рулеттам и т. д. Не располагая алгоритмом анализа бесконечно малых, Гюйгенс, проявляя исключительную изобретательность, систематически применяет инфинитезимадьные методы в геометрическом оформлении — этим аппаратом он овладел в совершенстве, и в этом среди его современников никто, кроме Ньютона, не мог с ним соперничать. Но мы еще не сказали о том, что в четвертой части Маятниковых часов , под названием О центре качания , решена поставленная Мерсенном проблема определения периода колебаний физического маятника. Это — первая глава динамики твердого тела. В этой созданной Гюйгенсом главе одинаково значительны результат и метод. В ней налицо то сочетание эксперимента и теории, технической направленности и обобщающего физического мышления, которое характерно для рассматриваемого периода. Проявить это сочетание в своем творчестве дано было только деятелям экстра-класса — Галилею, Гюйгенсу, Ньютону.  [c.110]

Проблема центра качаний была поставлена, можно сказать, в конкурсном порядке, тем же Мерсенном, который так интересовался открытиями Галилея в акустике. Отсылая за подробностями к гл. V (см. стр. 97), укажем здесь, что Гюйгенсу принадлежит не только решение задачи о центре качания, т. е. приведенной длине физического маятника, но и точная трактовка вопроса о периоде малых колебаний математического маятника. Таким образом, была решена задача и о периоде малых колебаний физического маятника. Гюйгенс определил также центры тяжести и центры качания для многих фигур, открыл циклоидальный маятник и доказал (строгую) изохронность его колебаний. Все это шло об руку с техническими изобретениями часов с коническим маятником, часов с циклоидальным маятником, с существенным усовершенствованием обычных маятниковых часов, идея которых возникла у Гюйгенса, видимо, вполне самостоятельно. Гюйгенсу не удалось создать хронометра, удовлетворяющего требованиям моряков, но его технические изобретения во всяком случае позволили значительно уточнить измерение времени, столь существенное и для исследования колебаний. Его вклад в теорию колебаний тоже велик помимо указанного выше явления, он открыл явление, названное позже принудительным консонансом . С этими (конструк-  [c.254]

Физически III класс соответствует неустойчивым периодическим и асимптотическим к ним решениям. При с = О периодическое движение для части ветви III а) является колебаниями физического маятника в меридиональной плоскости, проходящей через центр масс, а для части IIIЬ) — вращениями в этой же плоскости. Эти решения сходятся в точке h = 1, которая является верхним неустойчивым положением равновесия. Его неустойчивость может быть строго доказана различными способами [152]. Далее это доказательство будет получено путем явного построения асимптотического решения.  [c.119]

Физический маятник представляет собой тело массы т, вращающееся вокруг горизонтальной оси его момент инерции I и смещение / центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего разма.ха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение т точки подвеса можно считать белым шумом постоянной интенсивности Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов п угла за уровень, в 2 раза превышающий среднее 1свадратнческое значение в течение времени Т.  [c.447]

Из полученного выражения для чувствительности весов легко усмотреть, каковы пути П0ВЫН1СНИЯ чувствительности весов. Прежде всего для повышения чувствительности следует увеличивать длину коромысла и длину стрелки. Предел, однако, ставится тем, что очень длинное коромысло и очень длинная стрелка будут сами изгибаться, если не делать их достаточно массивными. Увеличение же их массивности, т. е. их веса Р , уменьшает чувствительность весов. Последняя возможность увеличения чувствительности весов — это уменьшение d, расстояния между центром тяжести и точкой подвеса. Для регулировки чувствительности весов в некоторых пределах обычно этим пользуются. На коромысле весов над или под точкой О помещается грузик, положение которого можно изменять при помощи винта. Поднимая грузик, мы приближаем центр тяжести весов к точке О и тем самым увеличиваем чувствительность весов. Однако и в этом направлении нельзя идти слишком далеко, поскольку весы представляют собой физический маятник и уменьшение d увеличивает период колебаний этого маятника, а вместе с тем и то время, которое необходимо, чтобы весы остановились в положении равновесия. Чтобы сократить это время, в чувствительных весах с большим периодом колебаний, не дожидаясь, пока весы установятся в положении равновесия, наблюдают наибольшие отклоне-иил весов при колебаниях. Из этих наблюдений определяют положение равновесия, около которого вссы колеблются.  [c.417]


Физическим маятником называют абсолютно твердое тело, способное соверщать колебания вокруг неподвижной точки, не совпадающей с его центром тяжести (рис. 135). При отклонении маятника из положения равновесия на угол ф возникает вращающий момент М, стремящийся возвратить маятник в положение равновесия. Если центр тяжести маятника находится в точке С на расстоянии I от точки О подвеса (рис. 135), то М = пщ1 s n(( , где т — масса маятника.  [c.171]


Смотреть страницы где упоминается термин Центр колебаний физического маятник : [c.87]    [c.542]    [c.74]    [c.672]    [c.247]    [c.141]    [c.144]    [c.425]    [c.94]    [c.366]   
Курс теоретической механики. Т.2 (1977) -- [ c.74 ]



ПОИСК



Колебание маятника

Колебания физического маятника

Маятник

Маятник физический

Теорема о центре колебаний физического маятника

Центр колебаний



© 2025 Mash-xxl.info Реклама на сайте