Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Второй закон динамики Ньютона

Второй закон динамики Ньютона ускорение, приобретаемое телом, пропорционально действующей на него силе и обратно пропорционально массе тела. Первая производная от импульса математической точки по времени равна действующей на нее силе  [c.198]

Так, второй закон динамики Ньютона для тела с постоянной массой имеет вид  [c.199]

ВТОРОЙ ЗАКОН ДИНАМИКИ НЬЮТОНА 61  [c.61]

Второй закон динамики Ньютона  [c.61]

При установлении основных физических закономерностей процесса теплопроводности рассматривались закон сохранения тепловой энергии и закон Фурье. Основные физические закономерности конвективного теплообмена могут быть установлены на основании предыдущих законов, а также законов, описывающих движение жидкости. К последним относится основной закон динамики (второй закон динамики Ньютона) и закон сохранения массы (принцип неразрывности жидкости). Два этих закона позволяют найти поле скорости жидкости.  [c.215]


Чтобы получить дифференциальные уравнения движения системы материальных точек, нужно выразить составляющие ускорения через координаты движущихся точек, применяя второй закон динамики Ньютона, согласно которому составляющая ускорения точки по любой координатной оси равна сумме составляющих по той же оси всех сил, действующих иа эту точку, поделенной на ее массу. Но это правило справедливо только для неподвижной системы координат и поэтому в нашем случае, где система координат движется вместе с точкой Мо, непосредственно неприменимо.  [c.355]

Второй закон динамики (Ньютон). Ускорение материальной точки относительно инерциальной системы координат прямо пропорционально силе, приложенной к точке, и обратно пропорционально ее массе, т.е.  [c.41]

Классическая динамика свободной материальной точки вытекает из законов И. Ньютона ( 124—131 т. I). Формулировка основного — второго закона И. Ньютона основывается на понятии о количестве движения материальной точки ( 126 т. I).  [c.521]

Эта формула математически выражает второй закон динамики, установленный Ньютоном на основе обобщения опытов, подобных рассмотренным выше. Он утверждает  [c.33]

Зависимость между силой и сообщаемым ею ускорением устанавливает второй закон динамики, или второй закон Ньютона, который формулируется так ускорение, сообщаемое материальной точке силой, имеет направление силы и пропорционально ее модулю.  [c.124]

Ньютон сформулировал второй закон динамики так Изменение количества движения пропорционально движущей силе и происходит по направлению той прямой, по которой эта сила действует ).  [c.66]

Зависимость между силой и сообщаемым ею ускорением устанавливает второй закон динамики, или второй закон Ньютона, который формулируется так  [c.141]

Основным законом динамики является второй закон Ньютона производная по времена от количества движения материальной точки равна действующей на нее силе, т. е.  [c.319]

Галилей открыл (1589 г.) законы падения тел на Землю. Ньютон пришел к общему понятию движения с переменной скоростью. К этому он присоединил очень трудное и важное для динамики понятие массы. Соотношение между изменением движения и силой сформулировано им во втором законе.  [c.256]

Обратимся к прямой задаче динамики и рассмотрим уравнение, выражающее второй закон Ньютона  [c.170]


Вторая аксиома динамики (второй закон Ньютона)  [c.205]

Вторая аксиома, или основной закон динамики, принадлежащий Ньютону, устанавливает зависимость ускорения точки относительно инерциальной системы отсчета 01 действующей на нее силы и массы точки ускорение материальной точки относительно инерциальной системы отсчета пропорционально приложенной к точке силе и направлено по этой силе (рис, 1). Если Р есть приложенная к точке сила и а — ее ускорение относительно инерциальной системы отсчета Охуг, то основной закон можно выразить в форме  [c.225]

Основное уравнение динамики материальной точки представляет собой не что иное, как математическое выражение второго закона Ньютона  [c.45]

Второй закон Ньютона положен в основу составления систем дифференциальных уравнений движения материальной точки. В связи с этим второй закон Ньютона иногда называют основным законом динамики.  [c.318]

Это название обусловлено также и тем, что основные теоремы динамики, как будет показано далее, являются следствиями, главным образом, второго закона Ньютона.  [c.318]

Основой динамики абсолютного движения материальной точки является второй закон Ньютона, который формально охватывает и первый закон Ньютона — закон инерции. Действительно, если предполагать, что масса точки не зависит от времени, то из соотношения (П1.5Ь) вытекает, что при равенстве нулю равнодействующей Е сил, приложенных к точке, равно нулю и ускорение т. е. материальная точка движется по инерции равномерно и прямолинейно.  [c.441]

Как и в классической динамике, эти уравнения вытекают из второго закона Ньютона ( 128 т. I). При рассмотрении второго закона Ньютона отмечалось, что в теории относительности следует исходить из равенства (III. 5а), указанного в т. I. Это равенство на основании соотношений (IV. 138) — (IV. 139) имеет следующий вид  [c.523]

Открытие Галилеем законов свободного падения тел сыграло основополагающую роль в деле создания ньютоновской динамики и, в частности, второго закона Ньютона.  [c.13]

Если к материальной точке приложены две или несколько сил, то ускорение, приобретаемое ею под действием равнодействующей этих сил, построенной по правилу параллелограмма, определится как векторная сумма ускорений точки под действием каждой слагаемой силы по отдельности. Это заключение является простым следствием второго закона Ньютона в принятой векторной формулировке (2). При этом используется допущение, что в динамических условиях, так же как и в статических, приложенные к материальной точке силы действуют на нее независимо друг от друга, т. е. наличие одних сил не вызывает изменений в действии других. Это положение составляет содержание принципа независимости действия сил, позволяющего применять в динамике правило параллелограмма сил и все те операции над системами сил, которые были установлены в статике.  [c.16]

Из постановки этих двух основных задач динамики непосредственно следует, что из трех переменных, входящих в формулу (2) второго закона (масса, кинематика движения, сила), задаются только две масса и кинематические уравнения движения— в первой задаче динамики, масса и сила —во второй. Это говорит о том, что второй закон Ньютона, выраженный векторной формулой (2) или аналитически системой (7), не является тождеством (определением понятия силы), а представляет собой уравнение с неизвестным вектором силы F (первая задача динамики) или вектор-радиусом r t) (вторая задача динамики).  [c.20]

Масса. Второй закон Ньютона (основная аксиома динамики). Наблюдение и опыт показывают, что материальные тела обладают рожденным свойством, из-за которого тело с трудом выводится из состояния покоя или изменяет свое движение. Способность материальной точки сопротивляться изменению ее скорости называется инертностью.  [c.71]

В такой форме второй закон Ньютона носит название основного уравнения динамики материальной точки и читается так  [c.238]


Выражение (5.5), которое может быть также получено с помощью строгого анализа [4, 5], показывает, что величина Йк лри рассмотрении вопросов динамики электронов играет роль классического импульса. Тем не менее, хотя формула (5.5) выглядит как второй закон Ньютона, она ему не эквивалентна, поскольку в выражение для силы F не включена сила, связанная с периодическим полем кристалла, а Як определено неоднозначно и представляет собой не импульс, а квазиимпульс.  [c.89]

Дифференциальное уравнение движения выражает собой основной закон динамики (второй закон Ньютона) применительно к движущейся сплошной среде. Идею вывода уравнения движения рассмотрим на элементарном примере движения жидкости между двумя параллельными плоскостями (рис. 12.2). Как и в случае уравнения энергии, ограничимся случаем несжимаемой жидкости (капельная жидкость или газ при умеренной скорости движения).  [c.272]

Первый и второй законы динамики Ньютона справедливы в инерциальной системе отсчета. С достаточной для практики точностью такой системой можно считать гелиоцентрическую с началом в центре Солнца и с осями, направленными на неподвижные звезды. Любая система, покоящаяся или движущаяся равномерно и прямолинейно относительно инерциальной, тоже инерциальна. Так как Земля вращается вокруг своей оси и вокруг Солнца, то главным образом по первой причине система отсчета, связанная с ее поверхностью, не является инерциальной. Однако ошибка при допущении об инерциальности геоцентрической системы в большинстве практических расчетов пренебрежимо мала.  [c.199]

Правило параллелограмма сил установлено в результате работ ряда ученых, из которых следует упомянуть С. Стевина (умер в 1633 г.) И. Ньютона и П. Вариньона (1654—1722). Симон Стевин доказал правило параллелограмма сил, исходя из невозможности существования вечного двигателя (perpetuum mobile). И. Ньютон и П. Вариньон доказывали правило параллелограмма сил, основываясь на принципах динамики. Собственно И. Ньютон рассматривал правило параллелограмма как добавление ко второму закону динамики, подтверждающее с современной нам точки зрения векторные свойства силы. Вариньон, не ограничиваясь дедуктивными соображениями, проверил правило параллелограмма экспериментально на построенном им приборе.  [c.251]

Ньютоном второй закон динамики был дан в более общей форме, иначе, чем это было сделано в предыдущих параграфах Для характеристики механического состояния при двнжеиии тела вводится еще одна величина — количество движения тела (или импульс). Количество движения тела — векторная физическая величина, численно равная произведению массы на скорость и имеющая направление, совпадающее с направлением скорости тела. Если количество движения тела с массой т обозначим К, то при скорости V  [c.66]

Сделаем предварительно следующее замечание об использовании уравнений Лагранжа для описания относительного движения в неинерциальной системе отсчета. В гл. И было установлено, что второй закон Ньютона (а значит, и основные теоремы динамики) может быть использован и в неинерциальной системе отсчета, если к /-Й точке системы (/=],. .., N) помимо действующих сил приложить силы инерции — переносную, Ji ep = = — miWi ер. и кориолисову, Ji кор = — 2т,- (ш х / o, )-  [c.160]

Теорема 5.1.1. (Приыщш Даламбера-Лагранжа). Для того чтобы ускорения Ги материальных точек (ш,у,г ), I/ = удовлетворяли второму закону Ньютона в инерциальной системе отсчета под действием активных сил и идеальных двусторонних связей (см. 3.8), необходимо и достаточно выполнение общего уравнения динамики  [c.378]

В этой главе будет рассмотрен ряд основных положений динамики, дающих возможность находить первые интегралы дифференциальных уравнений двилгения материальной точки. Эти положения динамики будем называть теоремами, так как они являются непосредственными следствиями из основных законов и аксиом механики. Заметим, что иногда эти теоремы называют также законами, но, конечно, при этом их надо четко отличать от основных законов механики — законов Ньютона. Основные теоремы динамики — это выводы в первую очередь из второго закона Ньютона, который поэтому называется основным законом механики.  [c.359]

Теорему об изменении кинетического момента системы в ее движении относительно центра инерции можно было доказать иначе, не используя формулу (1.51), а исходя из основного закона динамики относительного движения ( 230 т. I). Как известно, всякую задачу при изучении относительного движения материальной точки можно решать как задачу об абсолЕОТ-ном движении, но вместо второго закона Ньютона для абсолютного движения нужно пользоваться основным законом динамики относительного движения  [c.66]

Почти все выводы, получеппые в предыдущих главах, о двииа--иии механических систем опирались на второй закон Ньютона, устанавливающий зависимость ме кду ускорением точки и действующей на нее силой. Одпако второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем неремеи пого состава требует особого рассмотрения.  [c.214]

Второй закон Ньютона (основной закон динамики). Произведение массы точки на ускорение, получаемое точкой относительно инерциалъной системы координат под действием приложенной к ней силы, равно этой силе, т. е.  [c.94]


Смотреть страницы где упоминается термин Второй закон динамики Ньютона : [c.203]    [c.535]    [c.10]    [c.278]    [c.274]    [c.320]    [c.25]   
Смотреть главы в:

Механика Изд.3  -> Второй закон динамики Ньютона



ПОИСК



Второй закон Ньютона (основная аксиома динамики)

Второй закон динамики

ДИНАМИКА Законы динамики

ДИНАМИКА И СТАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ Занятие 8. Второй закон Ньютона и две задачи динамики

Динамика ньютонова

Закон Ньютона второй

Закон Ньютона,

Закон второй

Законы динамики

Ньютон

Ньютона второй

Ньютона закон (см. Закон Ньютона)

Основное уравнение динамики (второй закон Ньютона)



© 2025 Mash-xxl.info Реклама на сайте