Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм электрогидравлического привода тормоза

Механизм электрогидравлического привода тормоза 827  [c.848]

Выбор электрогидравлического толкателя для привода тормоза (Или другого механизма) производится по формуле  [c.160]

В качестве размыкающего устройства (привода рычажной системы тормоза) используются специальные тормозные электромагниты, электрогидравлические и электромеханические толкатели, включаемые параллельно двигателю механизма, так что размыкание тормоза и освобождение механизма происходит одновременно с включением двигателя. При выключении тока привод тормоза и двигатель механизма выключаются, тормоз под действием замыкающей силы замыкается и производит остановку механизма.  [c.174]


При применении вихревых тормозов в механизмах подъема кранов и в эскалаторах не отмечается характерного для процесса торможения на опускание увеличения скорости движения за время срабатывания стопорного тормоза (см. рис. 1.4). Время нарастания тормозного момента вихревого тормоза очень мало (порядка 0,2 с) и оно легко поддается регулировке, чего нельзя добиться при применении в механизмах одного стопорного тормоза с приводом от электрогидравлического толкателя. Испытания, проведенные во ВНИИПТМАШе [22], показали, что при помощи вихревого тормоза возможно осуществить плавное управление и регулирование торможения полотна эскалатора в соответствии с заданным режимом работы и с фактической загрузкой полотна, а также осуществить плавный разгон асинхронного электродвигателя привода с короткозамкнутым ротором с заданным ускорением, применяя метод сложения характеристик электродвигателя и тормоза.  [c.309]

В крановых механизмах обычных систем торможения тормоз с электрическим или электрогидравлическим приводом расположен вне двигателя. Конструкция с коническим ротором имеет внутренний тормоз. При неработающем двигателе расположенная вдоль оси вала пружина сжимает тормозное устройство и одновременно сдвигает в осевом направлении ротор относительно статора. При пуске двигателя ротор перемещается относительно статора, сжимает пружину и растормаживает тормоз. Такие двигатели получили распространение на электроталях и кран-балках с небольшим числом включений.  [c.60]

Грузовая лебедка ЛКС-3,2 (рис. У1-22) состоит из барабана, редуктора, электродвигателя с короткозамкнутым ротором, электродвигателя с фазовым ротором, тормоза с электромагнитным приводом, тормоза с электрогидравлическим толкателем и соединительных муфт. Вмонтированный в редуктор планетарный механизм обеспечивает совместную или попеременную работу электродвигателей, чем достигается изменение скоростей подъема и опускания груза (лебедка имеет две скорости подъема и три скорости опускания груза).  [c.437]

Все механизмы подъема снабжаются автоматически действующими тормозами нормально-замкнутого типа (с электромагнитным или электрогидравлическим приводом), размыкающимися при включении привода. В случае если эти механизмы имеют фрикционные или кулачковые муфты включения, то, согласно правилам Госгортехнадзора, они могут снабжаться управляемыми тормозами нормально-замкнутого типа, сблокированными с муфтой включения с целью предотвращения произвольного опускания груза или стрелы.  [c.231]


В качестве привода различных машин, механизмов, приборов и аппаратов с успехом используют мотор-толкатели центробежного типа — двигатели, обеспечивающие поступательное перемещение исполнительного звена с постоянным или изменяющимся по заранее заданному закону усилием. Толкатели обладают всеми достоинствами пневматических и гидравлических устройств с прямолинейным перемещением исполнительного звена (силовых пневмо- и гидроцилиндров) и в то же время полностью лишены недостатков последних — низкой экономичности, необходимости установки насосных (компрессорных) устройств, специальных уплотнений и т. д. Одним из главных достоинств толкателей является постоянство рабочей характеристики при резких изменениях температуры окружающей среды и возможность работы в условиях низких температур, что важно, в частности, для грузоподъемных машин — кранов (мостовых, башенных, козловых и т. п.), лифтов, мостовых перегружателей и др. Применение этих толкателей для привода тормозов и противоугонных устройств вместо электрогидравлических толкателей обеспечивает высокую  [c.212]

В связи с недостаточно надежной работой тормозов с приводом от электромагнитов типа МОБ ВНИИПТМАШ в своих ТУ 1960 г. на проектирование мостовых кранов в разделе Тормоза указывает, что тормоза переменного тока со шкивами диаметром от 200 мм и выше, применяемые в механизмах любого режима работы, должны иметь привод от электрогидравлических толкателей. Применение в новых конструкциях мостовых кранов электромагнитов типа МОБ, КМТ, КМП и ВМ для крановых тормозов не допускается.  [c.67]

Электромагнитные тормоза и тормоза с электрогидравлическими толкателями, замыкаемые автоматически при выключении тока, рассчитываются на торможение механизмов, работающих с номинальной нагрузкой. Поэтому торможение механизмов, работающих с нагрузкой, меньшей номинальной, или без нагрузки, происходит с повышенными величинами замедлений, что приводит к перенапряжению элементов механизмов и к значительному их износу.  [c.137]

В качестве размыкающего устройства (привода рычажной системы тормоза) используются специальные тормозные электромагниты и электрогидравлические толкатели, включаемые параллельно двигателю механизма. Размыкание тормоза происходит одновременно с включением приводного двигателя. При выключении питания двигатель выключается, а тормоз под действием замыкающей силы останавливает механизм.  [c.222]

В кранах отечественного производства преимущественно применяют колодочные тормоза конструкции ВНИИПТМАШа. Они состоят из двух колодок, расположенных по окружности тормозного шкива, системы рычагов, замыкающего устройства (сжатая пружина) и привода, растормаживающего устройства (электромагнита, электрогидравлического или электромеханического толкателя). Растормаживающее устройство включается параллельно двигателю, и поэтому размыкание тормоза и освобождение тормозного шкива происходит одновременно с включением двигателя. Колодочные тормоза являются нормально замкнутыми, автоматически замыкающимися при отключении электродвигателя механизма.  [c.95]

Электрогидравлический толкатель показан на фиг. 47. Он состоит из следующих основных частей стального и и чугунного цилиндрического корпуса б, в котором перемещается поршень 4 вместе с подвижными направляющими штоками 5 и траверсой 8. В нижней части корпуса установлен центробежный насос 3, который приводится в действие электродвигателем 7 через вал 2. Электрогидротолкатель присоединяется в нижней части проушиной 1 к раме тормоза, а в верхней части — проушиной 9 к верхнему рычагу (позиция 10 на фиг. 48). Электродвигатель толкателя соединен параллельно с электродвигателем подъемного механизма. При включении двигателя подъемного механизма включается и двигатель толкателя, насос 3 (фиг. 47) начинает перекачивать рабочую жидкость из верхней полости корпуса в нижнюю. Давление жидкости, образующееся под поршнем, вынуждает поршень 4 вместе с направляющими штоками 5 и траверсой 8 перемещаться вверх. Траверса толкателя 8, будучи связана с верхним рычагом 10 (фиг. 48), поворачивает последний вверх и при помощи штока разводит колодки. Во время работы насоса под поршнем создается постоянное давление, которое удерживает траверсу в верхнем положении, а тормоз в расторможенном состоянии.  [c.96]


Если реле К4 выключено, его размыкающие контакты соединяют электродвигатель М2 параллельно со статором электродвигателя MJ. Электродвигатель М2 при таком включении вращается с постоянной частотой вращения, а электрогидравлический толкатель выполняет обычные функции управления тормозом растормаживает механизм при включении привода и затормаживает его при отключении. В этом случае характеристики привода соответствуют естественной и искусственным характеристикам электродвигателя (1П и 2П) при подъеме и 1С и 2С при спуске (см. рис. 93, б).  [c.385]

Слишком резкое торможение механизма подъема стрелы приводит к появлению высоких динамических нагрузок и резких колебаний, что снижает усталостную прочность элементов механизма и металлоконструкции. Для снижения динамических нагрузок рекомендуется увеличить время торможения применением тормозов с плавным (регулируемым) нарастанием тормозного момента (например, тормозов с приводом от электрогидравлического толкателя с регулируемым временем затормаживания) или применением двухступенчатого торможения, осуществляемого с помощью двух тормозов, один из которых замыкается на 2—4 с позднее другого. Этой выдержки времени можно достигнуть с помощью реле постоянного тока, питаемого от селенового выпрямителя.  [c.14]

Для размыкания тормоза снабжаются специальным приводом — электромагнитным, электрогидравлическим, электромеханическим. До последнего времени наибольшее распространение в автоматических тормозах имел электромагнитный привод. В этом приводе электромагниты включаются в цепь питания двигателя механизма так, что размыкание тормоза происходит одновременно с включением двигателя. При прекращении подачи тока электромагнит выключается, тормоз замыкается и останавливает механизм. Однако вследствие ряда недостатков, электромагнитный привод постепенно вытесняется приводом от электрогидравлических толкателей. В настоящее время тормоза с электрогидравли-ческими толкателями как более надежные и долговечные, изготавливаются нашей промышленностью на специализированных заводах. Однако в ряде конструкций грузоподъемных машин, особенно при их работе на постоянном токе, применяются тормоза с приводом от электромагнитов.  [c.47]

В ряде случаев тормоза с приводом от электрогидравлического толкателя снабжаются устройством (рис. 3.30), автоматически поддерживающим заданный зазор между накладкой и щкивом при разомкнутом тормозе. В этом устройстве шток толкателя 9 соединяется с рычагом 2 тормоза, на который воздействует замыкающая пружина 1 посредством рамки 3. Соединение рамки с кронштейном 4, закрепленным на штоке 8 болтом 7 и вилкой 6, осуществляется только силами трения между выступами кронштейна 4 и стойкой рамки 3. При включении двигателя механизма одновременно включается толкатель 9, шток которого поднимается вверх и, вследствие наличия сил трения между рамкой 3 и кронштейном 4, поднимается рамка. Она воздействует на рычаг 2 тормоза, преодолевает усилие замыкающей пружины 1 и размыкает тормоз. При выключении двигателя механизма обесточивается и двигатель толкателя, и шток 8 вместе с рамкой 3 и кронштейном 4 опускается под действием пружины 1, производя замыкание тормоза.  [c.166]

Электромагнитные тормоза и тормоза с электрогидравлическими толкателями, замыкаемые автоматически при выключении тока, рассчитываются на торможение механизмов, работающих с номинальной нагрузкой. Поэтому торможение такими тормозами механизмов, работающих с нагрузкой, меньшей номинальной, или без нагрузки, происходит с повышенными замедлениями, что приводит к перенапряжению элементов механизмов и к значительному их износу. Регулирование процесса торможения для создания плавной остановки механизмов при их работе с грузами различного веса возможно лишь при использовании управляемых тормозов, которые обеспечивают плавность и точность остановки, повышают производительность и улучшают условия работы элементов механизмов, В грузоподъемных машинах, в механизмах поворота стреловых и портальных кранов, в которых излишне резкое торможение может привести к потере устойчивости и к авариям, только управляемые тормоза могут обеспечить нормальную и безопасную эксплуатацию этих машин и механизмов. Наибольшее применение управляемые тормоза нашли в механизмах передвижения и поворота. В механизмах подъема, в которых тормозной момент нужен как для остановки, так и для удержания груза в подвешенном состоянии, их применение огра-  [c.180]

Рис. 6.20. Тормоз с приводом от электрогидравлического толкателя для регулирования скорости механизма Рис. 6.20. Тормоз с приводом от <a href="/info/139185">электрогидравлического толкателя</a> для <a href="/info/187021">регулирования скорости</a> механизма
На механизмах передвижения тележечных перегружателей большей частью устанавливают двухколодочные тормоза с приводом от электромагнитов постоянного или переменного тока, а также с приводом от электрогидравлических толкателей (см. п. 10.1).  [c.121]

В лебедках с механическим приводом в качестве силовой установки чаще используют электродвигатели постоянного тока, допускающие регулирование скорости в весьма широких пределах, а в качестве передаточного механизма применяют клиноременную или зубчатую передачу. В лебедках ВНИИПТМАШа (рис. 39) открытые передачи заменены стандартным редуктором. Соединение вала двигателя 1 с ведущим валом редуктора 5 осуществляется упругой втулочно-пальцевой муфтой 2. Выходной вал редуктора с валом барабана 6 соединяется зубчатой муфтой. Удержание поднятого груза и остановка лебедки производятся двухколодочным тормозом 4 с электрогидравлическим толкателем 3.  [c.98]


При выключении муфты большой скорости и включении муфты малой скорости зубчатый венец затормаживается в результате этого сателлиты получают возможность вращения и катятся по внутреннему зацеплению зубчатого венца. При этом связанная с сателлитами обойма, а вместе с ней и ведомый вал привода вращаются со скоростью примерно в три раза меньшей, чем при включенной муфте большой скорости. После прохода ползуном пресса нижней мертвой точки снова включается муфта большой скорости и начинается быстрый подъем ползунов. В верхней мертвой точке выключаются обе муфты и включается тормоз, затормаживающий вращение обоймы с сателлитами и ведомой части вала. Так как при этом сателлиты, связанные с центральным зубчатым колесом, продолжают вращаться вокруг своих осей, то освобожденный муфтами зубчатый венец вращается в обратном направлении. Кроме описанной двухскоростной муфты для получения ускоренного цикла работы вытяжного пресса при сохранении оптимальной линейной скорости вытяжки известны и другие способы, уже упоминавшиеся выше в главе П1, в том числе используются электромагнитные муфты сцепления (фиг. 95). У таких муфт при помощи управляемого изменения электрических параметров можно получать различное скольжение между ведущей и ведомой частями муфты, чем и обеспечивается изменение скоростей, сообщаемых ведомой части механизма пресса. На особо крупных прессах, валы которых передают весьма значительные крутящие моменты, вместо муфт с электропневматическим управлением применяются муфты электрогидравлические.  [c.125]

Системы управления кривошипными прессами предназначены для циклического пуска и остановки главного исполнительного механизма при включении или выключении муфты и тормоза привода. В структуру системы управления входят органы включения, механизм управления и отключающие устройства. Собственно механизм управления, воспринимающий команду от включающего органа и передающий ее муфте и тормозу, в зависимости от вида энергоносителя может быть механическим, электромеханическим, пневматическим, электропневматическим или электрогидравлическим. Поэтому управление кривошипными прессами возможно при помощи механической, электромеханической, пневматической, электропневматической или электро-гидравлической систем.  [c.181]

В качестве привода тормозов применяют электро гидротолкатели и тормозные клапанные электромагни ты типа МО однофазного тока. Электрогидравлически толкатели (рис. 42) являются независимым механизмом, состоящим из электродвигателя и гидравлического пасоса, расположенных в цилиндрическом корпусе. В нижней части корпус двигателя имеет поддон с проушиной для крепления.  [c.75]

Электродвигатели и тормоза механизмов. Для приводов механизмов крана применены крановые электродвигатели с фaзшJMИ роторами, рассчитанные для работы в повторно-кратковременном режиме. На грузовой И стреловой лебедках устанавливаются либо электрогидравлические тормоза типа ТКТГ, либо тормоза ТКГ.  [c.87]

Выбор типа тормоза. В механизмах подъема груза широко используют автоматические нормально замкнутые тормоза с пружинным замыканием и электромагнитным или электрогидравлическим приводом типов ткт, ткп, ткг, тктг.  [c.33]

По принци пу действия — автоматические тормоза (тормоза с электромагнитным, электрогидравлическим или электромеханическим приводом, тормоза, замыкаемые весом транспортиру-, емого груза, и т. п.), замыкающиеся независимо от юли обслуживающего персонала одновременно с отключением двигателя механизма, на. котором установлен тормоз, и тормоза управляемые, замыкание или размыкание которых производится обслуживакщт персоналом при воздействии на орган управления тормозом независимо от привода механизма.  [c.138]

Детальное расположение механизмов на тележке мостового крана грузоподъемностью 5 и 20 т показано на рис. 19. На раме 11 тележки размещены механизмы главного и вспомогательного подъемов и механизм передвижения. Расстояние между продольными осями подтележечных рельсов называют колеей тележки, а расстояние между осями ходовых колес тележки - базой тележки. Механизм главного подъема состоит из электродвигателя 9, соединенного длинным валом-вставкой с редуктором 19. Полумуфта, соединяющая вал-вставку с валом редуктора и расположенная на входном валу редуктора 19, служит тормозным щкивом колодочного тормоза 1 с приводом от электрогидравлического толкателя. Выходной вал редуктора 15 соединен зубчатой муфтой с барабаном 10. Опоры верхних блоков 3 полиспаста и уравнительные блоки 2 расположены на верхней поверхности рамы, что облегчает их обслуживание и увеличивает возможную высоту подъема. Ограничителем высоты подъема служит шпиндельный выключатель 12, отключающий питание при достижении крюковой подвеской крайнего верхнего или нижнего положения. Вспомогательный механизм подъема имеет аналогичную кинематическую схему 15- двигатель, 15- редуктор, 17- барабан, 13- конечный выключатель).  [c.35]

Научно-производственное предприятие Подъемтранссер-вис разработало новую модификацию электрогидравлическо-го толкателя ТЭ-30 РД со встроенным обратным клапаном и демпфирующим устройством. Применение колодочных тормозов ТКГ-160-1 и ТКГ-200-1 (см. табл. 25), снабженных этими толкателями, позволило осуществить плавное нарастание тормозного момента, при замыкании тормоза, в течение регулируемого диапазона времени нарастания тормозного момента от 1,0 до 8,0 с. Тормоза с толкателями ТЭ-30 РД полностью взаимозаменяемые с базовыми тормозами ТКГ-160 и ТКГ-200. Они особо рекомендуются для применения в крановых механизмах передвижения и поворота, для которых обеспечение плавного торможения приводит к повышению надежности и безопасности эксплуатации кранов, к повышению срока службы узлов и деталей кранов, к повышению их производительности.  [c.233]

Если реле Р1 вьжлючено, его размыкающие контакты соедя-няют электродвигатель М2 параллельно со статором электродвигателя ML Электродвигатель М2 при таком включении вращается с постоянной частотой, а электрогидравлический толкатель выполняет обычные функции управления тормозом растормаживает механизм при включении привода и затормаживает его при отключении.  [c.148]

При выключении двигателя толкателя грузы 3 под воздейст-впем усилия замыкающей тормозной пружины возвращаются в исходное положение, и тормоз замыкается. Для получения большей компактности и шрощения рычажной системы тормоза замыкающая пружина иногда встраивается внутрь толкателя. Возрастание тормозного момента в тормозе с приводом от электромеханического толкателя происходит более плавно, чем при электрогидравлическом толкателе без регулировочных клапанов. Это повыщает плавность остановки механизма и уменьшает динамические усилия, возникающие при торможении.  [c.181]

Во всех осциллограммах, при относительно большом изменении скорости не наблюдалось существенного изменения / в процессе торможения. Практическое постоянство ( (а следовательно, и М ) в процессе одного торможения подтверждается также осцилло-графированием изменения скорости в процессе торможения в эксплуатационных условиях. На рис. 1.2 представлены осциллограммы некоторых случаев торможения крановых механизмов колодочными тормозами с приводом от короткоходового электромагнита переменного тока типа МО-Б (рис. 1.2, а, б и в) и с приводом от электрогидравлического толкателя (рис. 1.2, г). Как видно, скорость механизма о меняется в процессе торможения практически линейно, что возможно только при неизменных величинах моментов тормоза и сопротивления затормаживаемого механизма. Постоянство момента сопротивления механизма видно н по осциллограмме на рис. 1.2, г, где наблюдается линейное изменение скорости под действием момента сопротивления в тече-  [c.7]


Обычно при расчетах за частоту вращения принимают номинальную частоту вращения тормозного вала, соответствующую установившейся номинальной скорости движения груза. Для тормозов с электромагнитным приводом, особенно при короткоходовых электромагнитах переменного тока, обеспечивающих быстрое срабатывание тормоза, это значение близко к действительному. Однако при применении тормозов с приводом от электрогидравлического или электромеханического толкателя, имеющего значительное время срабатывания (т. е. время с момента отключения приводного двигателя механизма до момента начала контактирования элементов фрикционной пары тормозов), такое допущение может привести к существенным ошибкам при определении времени торможения или определении фактической работы торможения при тепловых расчетах.  [c.15]

Колодочные тормоза типа ТКТГ с приводом от электрогидравлических толкателей предназначены для установки в вертикальном положении (с горизонтальным расположением оси шкива) для использования на механизмах, работающих в непожароопас-ной или невзрывоопасной среде. При установке на механизмах, работающих на открытом воздухе, тормоза должны быть защищены от атмосферных осадков и прямого действия солнечной рациации. Ось толкателя должна быть в вертикальном положении и видимая часть штока должна быть сверху.  [c.161]

Тормоза с вертикальными рычагами и верхним креплением штока привода. Дисково-колодочные тормоза с рычажной СИСТСМ011, выполненной по тину системы двуколодочного тормоза (см. гл. 2), с верхним креплением штока привода к размыкающему рычагу изготовляют преимущественно в стопорном исполнении и используют в механизмах подъемно-транспортных машин. Тормоза замыкаются под действием цилиндрических витых или тарельчатых пружин, а размыкаются под действием электрогидравлических и электромеханических толкателей, электромагнитов толкающего исполнения с вертикальным расположением якоря, гидро- и пневмо-  [c.169]

Колодочные тормоза с шарнирным креплением колодок с двух сторон тормозного диска являются наиболее распространенным типом тормозов при электрическом приводе механизмов. ВНИИПТМаш разработал несколько конструкций двухколодочных тормозов для кранов с короткозамкнутыми элетромагнитами переменного тока (ТКТ), постоянного тока (ТКП), с электрогидравлическими толкателями (ТКТГ) и др.  [c.43]

В представленной на рис. 86, а —в конструкции управляемого тормоза гидроцилиндры 4 расположены на скобе охватываюп ей тормозной диск 1. Диск изготовлен из литейной стали или из высококачественного чугуна и соединен с одним из валов механизма. При подаче жидкости под давлением от педали управления в гидроцилиндр 4 поргини 5 цилиндра вместе с фрикционными накладками-колодками 2 прижимаются к тормозному диску, производя торможение механизма. Нормально замкнутый дисково-колодочный тормоз с приводом от электрогидравлического  [c.116]

Принципиальная электрическая схема крана приведена на рис. П-67, где приняты следующие условные обозначения ГС — синхронный генератор ЕСС5-91-4М101 СУ — стабилизирующее устройство генератора РУ—реостат установки напряжения МТ1, МТ2, МТС — электрогидравлические тормоза приводов главного подъема, вспомогательного подъема и стрелы ТВ — тормозной электромагнит тормоза поворота КК — командоконтроллер двигателя передвижения К1Г, К2Г, КВ —контроллеры управления электродвигателями главного подъема, вспомогательного подъема, вращения ЭМ — электромагнитная муфта механизма передвижения 1ТП, 2ТП — трансформаторы понижающие для освещения крана и селеновых выпрямителей ВС — выпрямитель селеновый для питания муфты и цепи динамического торможения Л —линейный контактор П1, П2,  [c.162]


Смотреть страницы где упоминается термин Механизм электрогидравлического привода тормоза : [c.377]    [c.10]    [c.207]    [c.189]    [c.60]    [c.22]    [c.117]    [c.13]    [c.32]   
Механизмы в современной технике Том 5 (1976) -- [ c.827 ]



ПОИСК



Г электрогидравлические

Механизм тормоза

Механизм электрогидравлического

Привод тормозов

Приводы электрогидравлические

Тормоза



© 2025 Mash-xxl.info Реклама на сайте