Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приводы электрогидравлические

Ленинградским филиалом Проектно-технологического института разработан станок для гибки труб, на котором весь цикл гибки (зажим трубы, гибка, вывод дорна, освобождение трубы и снятие ее со станка) производится автоматически. Станок предназначен для гибки труб диаметром 20—55 мм при радиусах гиба 30—300 мм. Привод — электрогидравлический, управление — кнопочное.  [c.110]

Привод можно разделить на силовой, при помощи которого приводятся в движение рабочие органы мащины, и привод управления, осуществляющий управление двигателями, тормозами, муфтами и т. п. По виду энергии, используемой для создания движущего момента или усилия, привод разделяется на ручной, электрический, гидравлический, пневматический, привод от двигателей внутреннего сгорания, паровой привод. Кроме того, в грузоподъемных машинах довольно часто используется комбинированный привод — электрогидравлический, электропневма-тический, привод от двигателей внутреннего сгорания в сочетании с электроприводом и др.  [c.54]


При более значительной мощности привода целесообразно применять следящие системы с насосом регулируемой производительности, имеющие более высокий к. п. д. В этом случае значительно снижается нагрев масла в системе и расходы на электроэнергию. В таких приводах электрогидравлические следящие системы весьма эффективно применяются в цепи управления насосом для автоматического регулирования его производительности.  [c.141]

Привод Электрогидравлический от Нагружение  [c.208]

В станках с программным управлением, в том числе в токарных, шаговый привод применяется широко. Имеются две модификации шагового привода электрогидравлический и электрический. Электрогидравлический шаговый привод обладает более 146  [c.146]

Привод в грузоподъемных машинах подразделяется по виду энергии, используемой для создания рабочего усилия или момента. В зависимости от типа, назначения и характера работы грузоподъемной машины механизмы ее могут иметь в основном два вида привода машинный и ручной. Машинный привод имеет следующие разновидности электрический, паровой, от двигателя внутреннего сгорания, гидравлический и пневматический кроме того, в ряде машин находит применение комбинированный привод, как, например, дизель электрический привод, электрогидравлический и электропневматический.  [c.191]

Испытательная машина типа УРС, показанная на рис. 20.3.3, состоит из нагружающего устройства 1, насосной установки 2 и пульта управления 3. Мащина снабжена электрогидравлическим приводом и электронной схемой управления, которые позволяют проводить как статические испытания образцов, так и их испытания на выносливость. Частота нагружения образцов в режиме растяжение— сжатие может быть задана в пределах от 0 до 100 Гц.  [c.343]

Исходя из конкретных требований, предъявляемых к приводу машины нередко оказывается целесообразным, используя положительные свойства разных передач, создавать передачи комбинированного типа (гидромеханические, электропневматические, электрогидравлические и др.). Особенностью гидравлических и пневматических передач является их способность развивать большие усилия при относительно малых значениях удельного давления жидкости и воздуха. Недостатком этих видов передач является относительно малая скорость движения жидкости и воздуха в трубопроводах.  [c.260]

В связи с недостаточно надежной работой тормозов с приводом от электромагнитов типа МОБ ВНИИПТМАШ в своих ТУ 1960 г. на проектирование мостовых кранов в разделе Тормоза указывает, что тормоза переменного тока со шкивами диаметром от 200 мм и выше, применяемые в механизмах любого режима работы, должны иметь привод от электрогидравлических толкателей. Применение в новых конструкциях мостовых кранов электромагнитов типа МОБ, КМТ, КМП и ВМ для крановых тормозов не допускается.  [c.67]


Электромагнитные тормоза и тормоза с электрогидравлическими толкателями, замыкаемые автоматически при выключении тока, рассчитываются на торможение механизмов, работающих с номинальной нагрузкой. Поэтому торможение механизмов, работающих с нагрузкой, меньшей номинальной, или без нагрузки, происходит с повышенными величинами замедлений, что приводит к перенапряжению элементов механизмов и к значительному их износу.  [c.137]

Недостатки тормозов с электромагнитами поставили задачу создания привода, обеспечивающего полную надежность работы тормозной установки и позволяющего регулировать процесс торможения в желаемом направлении. Таким приводом тормоза явился привод от так называемых электрогидравлических толкателей, дающий возможность получить практически любую степень плавности торможения.  [c.440]

Применение электрогидравлических толкателей позволяет создать однотипные конструкции тормозов для всего диапазона требуемых величин тормозных моментов при работе как на переменном, так и на постоянном токе (различие будет лишь в установке соответствующих двигателей толкателя). Как показало приведенное сравнение [1491 стоимости изготовления различных типов приводов (см. гл. 9) при средних и высоких значениях работы привода, стоимость толкателя даже ниже стоимости электромагнитов.  [c.464]

Для создания надежной конструкции тормозов подъемнотранспортных машин и их унификации во ВНИИПТМАШе разработан ряд колодочных тормозов, развивающих тормозные моменты от 30 до 1250 кГм, с приводом от электрогидравлических толкателей.  [c.469]

При проектировании тормозов с приводом от электрогидравлических толкателей ВНИИПТМАШ придерживался тех же положений, какие были приняты при разработке ряда тормозов со шкивами диаметром 100—300 мм с электромагнитным приводом (конструкции отдельных элементов тормозов, принимаемые значения давлений в шарнирах, посадки сопряженных элементов и т. д.).  [c.472]

Замыкание тормоза с приводом от электрогидравлического толкателя осуществляется усилием двух сжатых пружин 2 (для 472  [c.472]

Характеристика колодочных тормозов ВНИИПТМАШа с приводом от электрогидравлических толкателей  [c.474]

Характеристики колодочных тормозов с электрогидравлическим приводом  [c.477]

Фиг. 286. Колодочные тормоза с электрогидравлическим приводом Фиг. 286. <a href="/info/120014">Колодочные тормоза</a> с электрогидравлическим приводом
Достоинством данного типа привода по сравнению с обычными электрогидравлическими толкателями является возможность установки его в любом месте независимо от места установки тормоза, так как размыкающий цилиндр тормоза соединяется с приводом посредством тонких трубопроводов. Это позволяет в некоторых случаях более рационально использовать площадь и уменьшить габариты всей установки.  [c.488]

Аналогичными методическими приемами получены ВММ для оценки динамических свойств электрогидравлического шагового привода, изучены свойства регулируемых приводов главного движения, решены динамические задачи позиционирования механизмов смены инструмента, исполнительных механизмов промышленных роботов, транспортных устройств автоматических линий с гидравлическим приводом выполнен синтез приводов, обеспечивающих стабилизацию силовых параметров процесса резания.  [c.99]

Погрешность, вносимая приводом подач, в большой степени определяется количеством элементов, включенных между управляющим устройством и исполнительным органом станка. Условно назовем эту характеристику длиной блок-схемы привода. Шаговые приводы подачи имеют наиболее короткую блок-схему, но при этом у них отсутствует контроль действительных перемещений исполнительного органа в процессе обработки, что существенно снижает предельные возможности привода. Несмотря на это, большая часть станков с ЧПУ средней точности оснащается шаговыми электрогидравлическими приводами, наиболее отработанными в настоящее время.  [c.119]


Электрогидравлические приводы обладают наиболее существенными преимуществами электрических и гидравлических приводов возможностью применения электрических и корректирующих устройств цепей самонастройки, точным заданием программы управления с помощью электрических сигналов.  [c.120]

Электрогидравлические приводы подач строятся на основе электромеханического либо шагового преобразователя. На рис. 5.17 показан привод подачи стола станка с электромеханическим  [c.121]

Рис. 5.17. Электрогидравлический привод Рис. 5.18, Принципиальная схема подачи стола шагового электрогидравлического Рис. 5.17. Электрогидравлический привод Рис. 5.18, <a href="/info/4763">Принципиальная схема</a> <a href="/info/159631">подачи стола</a> шагового электрогидравлического
В большей степени перечисленным требованиям удовлетворяют приводы электрогидравлический с дроссельным или объемным регулированием и электрический с двигателем постоянного тока и электро-машинным или тиристорным усилител м мощности, в меньшей — привод с шаговым двигателем.  [c.185]

В современных системах автоматического регулирования и управления широко применяются электрогидравлические и электро-пневматические следяш ие приводы. Управляюш,ая часть таких приводов состоит из электрических устройств, которые воспринимают задаюш ие воздействия от чувствительных элементов или от вычислительных устройств, сравнивают их с сигналами обратной связи и вырабатывают сигналы управления силовой частью, состоящей из исполнительных элементов и регулирующих устройств. Исполнительными элементами служат различного типа гидродвигатели, если привод электрогидравлический, или пневмодвигатели, если привод электропневматический. Регулирование гидродвигателей может быть дроссельным, струйным или объемным. Пневмо бигатели имеют либо дроссельное, либо струйное регулирование.  [c.356]

Таким образом, структура привода будет записываться в виде числа из нулей и единиц <Ко, К, Кг, Кз, Кз, Кз>- Например, если привод имеет описание структуры в виде <0, 0, 0, о, о, 0>, то это электрогидравлический линейный шаговый привод привод, описываемый структурой <1, 1, 1, 1, 1, 1>,— электрический с электромашинным усилителем мощности привод, заданный структурой -<0, 1, 1, 1, 0, 0>,— электрический с силовым шаговым двигателем привод, имеющий структуру -<1, О, 1, о, о, 1>,— электрогидравлический, роторный с электромагнитным преобразователем и реечной передачей и т. д. Например, структура -<0, о, о, 0, 0, 0> определяет привод, в котором отсутствует датчик обратной связи (/(о = 0) следовательно, преобразующее устройство привода должно быть построено  [c.33]

Гидрораспределитель с электрогидравлическим управлением и регулируемым реверсом типа ДГ73-4, распространенный в существующих приводах (рис. 11, а), выполненный по основной (первой) схеме, работает следующим образом. При обесточенных электромагнитах золотник 1 управляющего пилота и главный золотник 3 распределителя под действием пружин 2 и 4 находятся в среднем положении при этом обе полости под торцами главного золотника сообщены со сливом. При включении одного из электромагнитов золотник 1, перемещаясь, направляет рабочую жидкость из полости 7 подвода давления управления через обратный клапан 6 под один из торцов главного золотника 3. Из противоположной торцовой полости, разобщенной с линией управления, рабочая жидкость через дроссель 5 вытесняется в сливную линию 8. Переключением главного золотника осуществляется реверсирование потоков рабочей жидкости.  [c.29]

Гидравлическая схема (рис. 26) включает гидробак 1, нерегулируемый насос 2, электрогидравлические распределители 3, 4 и 5, гидроцилиндры 6 подъема-опускания заслонки, гидроцилиндры 7 подъема-опускания ковша, гвдроцилиндры 8 привода задней стенки, электрогидрав-лический предохранительный клапан 9, фильтр 10 с переливным золотником, манометры И, термометр 12.  [c.100]

Насосы и гидродвигатели в принципе обратимые машины, т. е. насосы могут работать как гидродвигатели, а гидродвигатели — как насосы. Поэтому у них и общая классификация. Смотря по тому, какие насосы и гидродвигатели входят в состав гидропередач, их подразделяют на объемные (насос и гидродвигатель — объемные машины), гидродинамические (насос и гидродвигатели — гидродинамические машины), объемно-гидродинамические (насос—объемный, гидродвигатель — гидродинамический) и гидродинамо-объем-ные (насос — гидродинамический, гидродвигатель — объемный). Поскольку в настоящем курсе изучаются только объемные и гидродинамические передачи, то для иллюстрации гидропередачи смешанного типа рассмотрим гидродинамо-объемную передачу, нашедшую применение в электрогидравлическом приводе типа ЭГП (рис. 95). Этот привод используется в горной промышленности для  [c.145]

Для тормозных устройств повышенной мощности (при диаметре шкива начиная с 400 мм) ВНИИПТМАШ разработал конструкцию комбинированного колодочного тормоза (фиг. 106, а) с управлением от пневмопривода на базе тормозов ТКТГ, имеющих привод от электрогидравлического толкателя [28]. При отсутствии подачи сжатого воздуха тормоз работает как обычный нормально замкнутый тормоз, размыкаемый при включении толкателя 14 и замыкаемый усилием сжатой пружины 7. При работе от системы пневмоуправления толкатель включают, и тормоз под действием усилия  [c.161]

Износоустойчивость электромагнитов типов МО-100Б и МО-200Б равна примерно 1,5 млн. включений магнитов МО-ЗООБ — 1 млн. Вследствие относительно низкой износоустойчивости, резко уменьщающейся при уменьшении момента сопротивления тормозного штока, когда удары якоря о ярмо увеличиваются, магниты серии МО не рекомендуется применять при тяжелом и весьма тяжелом режимах работы. Для этих режимов следует применять тормоза с электромагнитами серии МП с питанием их от сети переменного тока через селеновые выпрямители или тормоза с приводом от электрогидравлических толкателей. Так как в электромагнитах серии МО ток, протекающий по катушке магнита, в момент включения значительно превышает ток при сомкнутых поверхностях якоря и сердечника, то во избежание перегрева обмотки катушек (температура не должна превышать 105° С) надо следить за качеством контакта поверхностей ярма и якоря и не допускать работы с числом включений в час, превышающим рекомендуемые значения.  [c.413]


На фиг. 286 показаны конструкции колодочных тормоэОЁ с толкателями различных зарубежных фирм. Так, на фиг. 286, а показан тормоз с приводом от электрогидравлического толкателя фирмы General Ele tri (конструкцию толкателя см. на фиг. 263). На фиг. 287 показан чертеж такого тормоза, а в табл. 84 приведены основные характеристики и размеры ряда этих тормозов. Шток 1 с винтом около правого рычага тормоза служит для обеспечения равномерности отхода обеих тормозных колодок от тормозного шкива при разомкнутом тормозе. Рычажная система тормоза соединяется со штоками толкателя подковообразной траверсой 2.  [c.477]

В отличие от электрогидравлических толкателей с центробежным насосом обратное движение штока толкателя Гидромакс происходит только при переключении электросхемы включения магнитов толкателя. При выключении тока поршень 2 остается в неподвижном состоянии и не может сам под действием внешней нагрузки возвратиться в крайнее нижнее положение. Следовательно, этот толкатель не может обеспечить автоматического замыкания тормозного устройства при выключении тока. На это обстоятельство должно быть обращено особое внимание при выборе типа привода.  [c.485]

Обособленной группой электрогидравлических приводов тормозных устройств являются приводы с плунжерными или шестеренчатыми насосами, соединяемыми внешними трубопроводами с цилиндрами управления тормозов. На фиг. 293 показан привод типа Drol (Gensel-kranantriebe) [156], состоящий из шестеренчатого насоса 4, смонтированного в масляном резервуаре 13. Этот агрегат может быть установлен в любом месте независимо от тормоза и соединен с цилиндром 19, размыкающим тормоз напорным и сливным трубопроводами. Напорный трубопровод подводится к отверстиям 2 и /б на резервуаре для масла и на цилиндре, а сливной — к отверстиям 3 и 18.  [c.486]

Фиг. 293. Электрогидравлический привод высокого давления с шестеренчатым насосом типа Огб1 Фиг. 293. Электрогидравлический привод <a href="/info/251457">высокого давления</a> с <a href="/info/108241">шестеренчатым насосом</a> типа Огб1
Пневматический привод почти не используется в системах контурного управления, главным образом из-за с кнмаемости рабочего тела и связанной с этим нестабильностью характеристик. Широкое распространение в системах контурного управления движением машин, а также в позиционных системах получили следящие электрогидравлические приводы. В следящих системах используются гидроприводы как с объемным, так и с дроссельным регулированием (см. рис. 15, а, б). В системе объемного регулирования, как указывалось в 2, входным параметром и является угловая координата отклонения шайбы насоса в следящей системе имеется обратная связь, связывающая некоторой передаточной функцией параметр и с выходными координатой х и скоростью X. В общем случае имеем  [c.124]


Смотреть страницы где упоминается термин Приводы электрогидравлические : [c.348]    [c.281]    [c.14]    [c.271]    [c.140]    [c.190]    [c.190]    [c.230]    [c.377]    [c.214]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.5 , c.186 ]



ПОИСК



Автоколебания в электрогидравлическом следящем приводе с дроссельным регулированием

Г электрогидравлические

Колодочные тормоза е электрогидравлическим приводом

Машина с электрогидравлическим приводом

Методы коррекции динамических свойств рулевых электрогидравлических следящих приводов

Механизм электрогидравлического привода в групповом контроллере

Механизм электрогидравлического привода тормоза

Привод электрогидравлический следящий

Развитие систем управления полетом и применение в них электрогидравлических приводов

Следящие электрогидравлические приводы с непрерывным управлением

Следящие электрогидравлические приводы с широтно-импульсным управлением

Тормоза с приводом от электрогидравлических толкателей

Удерживающие электромагниты с приводом от электрогидравлических толкателей серии МТЭ

Устройства с электрогидравлическим приводом

Электрогидравлические и электропневматические следящие приводы

Электрогидравлические приводы тормозов

Электрогидравлические следящие приводы с объемным регулированием

Электрогидравлические толкатели и колодочные тормоза с приводом от толкателей конструкции ВНИИПТМАШа

Электрогидравлический приЭлектромеханический привод

Электрогидравлический следящий привод с дроссельным регулированием

Электрогидравлический следящий привод с дроссельным регулированием и с дополнительной обратной связью по производной от перепада давления в гидроцилиндре

Электрогидравлический следящий привод с дроссельным регулированием и с дополнительной обратной связью по расходу жидкости



© 2025 Mash-xxl.info Реклама на сайте