Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория пластического упрочнения металлов

Теория пластического течения металлов, учитывающая явление упрочнения (при значительно больших деформациях, чем наблюдаемые под растягивающими напряжениями), должна принимать во внимание также и анизотропию металла, которая, как известно, развивается, когда зерна вытягиваются, принимая удлиненную форму ). Это имеет место, например, после последовательной холодной прокатки и протяжки.  [c.289]

Зависимость (2.21), в которой и Ку — константы, за достаточно короткое время нашла свое экспериментальное подтверждение на абсолютном большинстве поликристаллических металлов и сплавов. Поэтому эТу зависимость пытались неоднократно объяснить с помощью различных теоретических моделей. Среди таких моделей наибольшее распространение получили теория, связывающая концентрацию напряжений в вершинах индивидуальных полос скольжения с размером зерна [26, 98, 99, 102] модель деформационного упрочнения, согласно которой плотность дислокаций, необходимая для пластической деформации металла, изменяется обратно пропорционально размеру зерна [63] модель начала пластического течения, исходящая из действия зернограничных источников и их определяющей роли в процессе передач , скольжения от зерна к зерну [54, 102].  [c.49]


ОСНОВЫ ТЕОРИИ УПРОЧНЕНИЯ МЕТАЛЛОВ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И РАЗУПРОЧНЕНИЯ ДЕФОРМИРОВАННЫХ МЕТАЛЛОВ ПРИ НАГРЕВЕ  [c.7]

Суш,ествующие гипотезы и модели деформационного упрочнения в значительной мере основаны на теории Тейлора, по которой основной вид деформации при пластическом течении металлов определяется дислокационным механизмом.  [c.7]

Теория дислокаций позволяет понять двойственную природу пластической деформации при обработке резанием деформация приводит к упрочнению металла (увеличению напряжения течения с ростом степени пластической деформации), одновременно подготовляя условия для его разрушения (накопления повреждаемости).-  [c.21]

Механизм деформационного упрочнения еще полностью не раскрыт. Имеющиеся теории упрочнения не дают ответа на многие вопросы, связанные с упрочнением металлов при пластической деформации.  [c.111]

Наклеп металлов в процессе пластической деформации с точки зрения отдельных дислокаций пока не исследован. Многие из современных дислокационных теорий не дают ясного представления о том, например, связано ли упрочнение при пластической деформации в основном с взаимодействием дислокаций или же с нарушениями, которые остаются в плоскостях скольжения на месте передвижения дислокаций. Несмотря на то, что имеющиеся данные по изучению свойств пластически деформированных металлов и сплавов пока не позволяют достаточно полно представить физическую картину процесса упрочнения, все же, по-видимому, относительная роль показателей тонкой кристаллической структуры в процессе упрочнения изменяется в зависимости от способа и стадии упрочнения, а также от свойств материала.  [c.112]

Основные положения теории термической обработки деформированного металла. Для снятия упрочнения и повышения пластичности металла выполняют его термическую обработку. В основу теории этого процесса положены экспериментальные данные последних 70-80 лет. Принято считать, что при нагревании деформированный металл стремится перейти в равновесное состояние, характеризуемое при определенной температуре минимумом свободной энергии. Возврат механических свойств, т. е. снижение прочностных и повышение пластических характеристик металла, начинает ощущаться по мере активации диффузионных процессов. Наиболее низкотемпературным процессом считается отдых , при котором происходят некоторое перераспределение дислокаций, уменьшение радиуса их кривизны, уменьшение плотности дислокаций одного знака. Скорость отдыха контролируется в основном диффузионным потоком вакансий и примесных атомов вдоль дислокационных трубок.  [c.120]


Приложение этой теории, достаточно точно учитывающей процесс упрочнения металла и не пренебрегающей изменением объема за счет упругих слагающих деформаций, к решению ряда практических задач (пластический прогиб тонких пластинок, жестко заделанных по круговому контуру [51 ], сжатие цилиндров [50], 2 19  [c.19]

Как это следует из приведенных в таблице данных, низко отпущенные стали обнаруживают более высокие пределы, текучести при сжатии. По своей структуре они представляют собой пересыщенные твердые растворы. В соответствии с одной из новейших теорий упрочнения металлов при пластической деформации низко-отпущенных сталей, происходит распад мартенсита с выделением карбидов по плоскостям скольжения. Такой распад сопровождается уменьшением объема, и из чисто термодинамических соображений следует ожидать, что при сжатии, характеризующемся уменьшением объема металла (во всяком случае на первых стадиях пластического формоизменения), процессы карбидообразования, ответственные за упрочнение, будут происходить интенсивнее, чем при растяжении, когда объем напряженного металла увеличивается. Материалы, обладающие стабильной при деформации структурой (например, высокоотпущенные стали), показывают, как известно, одинаковые пределы текучести при растяжении и сжатии.  [c.32]

Рассмотренная нами гипотетическая теория дислокаций удовлетворительно объясняет целый ряд явлений, сопутствующих процессу пластического формоизменения металлов, в том числе явление упрочнения, влияние на процесс пластической деформации температуры, скорости деформации и времени.  [c.44]

Подобно тому как теория течения металлов, обладающих упрочнением (п. 3 настоящей главы), основывалась на введении функции пластического упрочнения Хо = /(7д), которую, в свою очередь, можно рассматривать как математическое обобщение линейной зависимости между напряжениями и деформациями — для (несжимаемого) упругого материала, точно так же и теория установившейся ползучести твердых тел может основываться на  [c.472]

Модели пластической среды с упрочнением должны отражать более тонкие детали пластических свойств металлов. Многообразие и сложность этих деталей делают задачу построения вполне удовлетворительной теории таких сред весьма трудной. Известные к настоящему времени модели пластической среды с упрочнением удовлетворительно согласуются с данными опытов лишь в рамках класса процессов, который, сверх ограничений, определяемых условиями о независимости поведения от времени и неизменности поля температуры, существенно ограничивается также в отношении допустимых путей деформирования или нагружения (траекторий процесса в пространстве Вs или Вэ)- Особые затруднения вызывает описание поведения реальных металлов при резких изменениях положения главных осей напряжения, соответствующих траекториям типа реализующихся в опытах с ортогональной догрузкой. В этих случаях наиболее резко проявляется размытость действительной границы упругости материала, для учета которой необходим отказ от некоторых обычных допущений механики пластических сред. Надо заметить, что эта размытость проявляется также в результатах опытов по изучению картины запаздывания (В. С. Ленский, 1958, 1961).  [c.95]

Теория кривых упрочнения. Упрочнением называется процесс изменения физико-механических свойств металлов в результате его пластической деформации.  [c.11]

Уравнение (18.4.1) иногда называют уравнением состояния при ползучести, но этот термин в теориях, использующих термодинамику, имеет несколько иной смысл. Существенно подчеркнуть, что параметром упрочнения является именно деформация ползучести р в ранних работах эта оговорка часто не делалась и за параметр упрочнения принималась полная деформация (иногда за вычетом упругой части). Опыты показывают, что мгновенная пластическая деформация, если она невелика—порядка 1—2%,— не оказывает упрочняющего влияния на последующую ползучесть. Это можно объяснить некоторой разницей механизма мгновенной пластической деформации и пластической деформации, происходящей в процессе ползучести. В первом случае, если пластическая деформация невелика, она происходит в результате локализованного скольжения по пачкам плотно расположенных плоскостей скольжения в кристаллических зернах, при этом большая часть объема металла остается недеформированной, а следовательно, неупрочненной. Ползучесть происходит в результате скольжения по атомным плоскостям, распределенным по объему равномерно и на близких расстояниях величина сдвига в каждой плоскости невелика, но достаточна для создания равномерного упрочнения.  [c.621]


Для трубы из задачи 118 вычислить предел пластического сопротивления, т. е. то наименьшее давление газов внутри ствола, при котором весь металл последнего переходит в пластическое состояние. За расчетную принять теорию наибольших касательных напряжений. Материал трубы полагать идеально-пластическим, т. е. неспособным к упрочнению. Предел текучести  [c.225]

Особенностью механохимического растворения поверхности алюминиевого сплава является некоторая задержка активного растворения относительно роста нагрузки (см. рис. 58, пунктирная кривая). Это торможение обусловлено эластичностью окисной пленки, которая не теряет своей сплошности вплоть до заметных значений пластической деформации и испытывает воздействие двух конкурирующих процессов — механического разрушения и химического восстановления (репассивации). Когда процессы механического разрушения становятся преобладающими (в областях пересечения плоскостями скольжения поверхности металла), механохимический эффект резко увеличивается, и в соответствии с теорией коррелирует с ростом деформационного упрочнения сплава, как и в случае нержавеющих сталей.  [c.154]

Можно считать установленным, что пластические сдвиги, возникающие в металле под действием циклической нагрузки, приводят к наклепу и перераспределению напряжений как между зернами, так и внутри самих зерен. Наклеп для многих металлов сопровождается увеличением твердости. Пластическая деформация накапливается в результате скольжения и двойникования вдоль тех же кристаллографических плоскостей и по тем же направлениям, что и при действии статических нагрузок. И. А. Одинг дополнил эту теорию, обратив внимание на то, что циклические повторяющиеся напряжения вызывают в металле два одновременно протекающих явления упрочнение и разупрочнение Л. 31]. Упрочнение связывается с наклепом и старением, а разупрочнение — с появлением напряжений второго рода, искажений третьего рода, дроблением кристаллов на блоки.  [c.159]

Дан краткий обзор теорий упрочнения и разрушения металлов при пластической деформации, описаны методы кратковременных механических испытаний и приемы математической обработки опытных данных.  [c.2]

Теория упрочнения и разупрочнения. Теория упрочнения и разупрочнения впервые была предложена И. А. Одингом [8] и получила дальнейшее развитие в его работе [3]. Автором было устано влено, что при циклических напряжениях в металлах одновременно происходит явление упрочнения и разупрочнения. Для объяснения процесса усталости И. А. Одинг рассмотрел особенности петель упругого и пластического гистерезисов.  [c.9]

Среди физико-химических процессов, определяющих процесс резания, основное значение имеет процесс пластической деформации при образовании стружки. От характера пластической деформации, деформационного упрочнения и разрушения металла при стружкообразовании зависят точность обработки деталей и качество поверхностного слоя. Параллельно со стружкообразованием при резании протекают процессы контактного взаимодействия инструмента со стружкой и обработанной поверхностью, сопровождаемые интенсивным тепловыделением, трением, адгезионным взаимодействием обрабатываемого материала и инструмента. Явления, сопровождающие контактное взаимодействие, существенно влияют на свойства обработанной поверхности, определяют стойкость инструмента и устойчивость процесса резания. Современная теория резания рассматривает процессы стружкообразования, контактных взаимодействий и формирования поверхности детали как единый процесс разрушения и деформирования металла.  [c.565]

В учебнике излагаются теоретические основы металловедения кристаллическое строение металлов, теория сплавов, железоуглеродистые сплавы, учение о пластической деформации, теория и практика термической обработки и поверхностного упрочнения,. высокочастотна закалка и химико-термическая обработка.  [c.2]

Основы теории жаропрочности. На поведение металла при высоких температурах оказывает влияние ряд накладывающихся друг Ha- друга процессов, например, пластическая деформация и упрочнение вследствие наклепа, разупрочнение благодаря возврату первого рода, полигонизация, рекристаллизация, диффузионные процессы и фазовые превращения.  [c.393]

Инициирование трещины в гладком или, в крайнем случае, слегка надрезанном образце сопровождается местной пластической деформацией и механическим упрочнением, возникновением микротрещины или поры, что затем приводит к образованию ярко выраженной трещины. Для исследования ранних стадий образования трещины необходимо проанализировать упругопластическое состояние в зоне трещины и соответствующий критерий образования микротрещины и несплошности. Напряженно-деформированное состояние в таких зонах должно быть достаточно развитым, чтобы можно было надежно определить инициирование трещины. Но как только трещина четко обозначится, условия ее изучения улучшаются, хотя многое остается неизвестным. Если исследования ограничиваются главным образом хрупкими материалами, включая материалы, в которых пластическая зона около трещины мала, то поведение трещины в начальный момент ее распространения можно объяснить с помощью классической теории Гриффитса. Хотя Гриффитс исследовал идеально хрупкие материалы, последующая модификация его концепций позволяет использовать результаты и для других материалов, например металлов, которые ведут себя как хрупкие, но обнаруживают значительную пластическую деформацию в ограниченной зоне около вершины трещины.  [c.61]


Проведенное рентгенографическое исследование позволило оценить степень фрикционного упрочнения при заданных условиях трения. Полученные результаты показали хорошую согласованность с результатами измерения микротвердости. Таким образом, использование результатов рентгенографического анализа и установленных соотношений механических свойств и параметров структуры деформированного металла позволило получить сведения о пластических деформациях и действующих на контакте напряжениях течения при сухом трении, согласующихся как с общей молекулярно-механической теорией трения, так и с рассмотренной в работе [15] моделью заедания.  [c.25]

Теория пластичности обычно не учитывает анизотропию материала. Между тем, уже из кристаллографических закономерностей пластической деформации (см. гл. 3) вытекает, что сдвиги и вызываемое ими упрочнение и сопутствующие процессы должны происходить ориентированно, следовательно, зависеть от направления, поэтому по мере роста величины пластической деформации анизотропия в общем должна проявляться более резко. Это в действительности и наблюдается во многих случаях. При прокатке, прессовании, волочении, ковке, а также при механических испытаниях кристаллиты или другие структурные элементы поворачиваются таким образом, что вместо беспорядочной ориентировки зерна в поликристалле приобретают сходную ориентировку (текстуру). Кроме того, зерна, структурные составляющие и включения вытягиваются вдоль направления деформации, что создает геометрическую текстуру, которая часто сохраняется и после рекристаллизации. Все это обусловливает анизотропию механических свойств металлов за пределом упругости.  [c.331]

Теория пластического упрочнения металлов. Кривые истинных напряжений в функции от пластических деформаций, полученные при испытаниях на растяжение мягкого металла при нормальной температуре за пределом текучести, определяют кривую пластического упрочнения металла при растяжении. Подобные же кривые можно получить и путем сжатия, кручения и других видов испытания металлов. Общим свойством этих кривых является рост надряжений, сопровождающий увеличение пластических деформаций. В связи с этим возникает вопрос, нельзя ли определить такую обобщенную функцию пластического упрочнения, которая связывала бы обобщенные напряжения с обобщенными деформациями и, описывая поведение металла в такой общей форме, позволяла бы получать кривые пластического упрочнения для простых напряженных состояний (растяжения, сжатия и пр.). Попытки определить такую обобщенную функцию или такой обобщенный закон упрочнения предпринимались уже давно ), но  [c.463]

Некоторые вопросы, связанные с этой аналогией между теориями пластического упрочнения и стадией установившейся ползучести металлов были в дальнейшем рассмотрены в статье автора, указанной на стр. 469. Е ней для обоих случаев приведены различные формулы для распределения напряжений в толстостенных цилиндрах и получены коэффициенты концентрации вокруг отверстия, причем для обоих случаев были приняты степен-  [c.473]

Описанные выше модели деформационного упрочнения основываются на каком-либо одном механизме накопления дислокаций. Кроме того, в каждой из них используются допущения, упрощающие сложную картину пластической деформации в реальных материалах. Сложность, многоуровневость и разнообразие процессов, сопровождающих деформационное упрочнение, затрудняют возможность создания общей физической теории упрочнения металлов и сплавов. При этом все оценки напряжения, необходимого для продвижения дислокаций через область, имеющую плотность дислокаций р, принимают вид формулы (3.1), а какой конкретный механизм из приведенных действует в том или ином случае, зависит от реальной дислокационной модели, структуры, типа материала и условий нагружения.  [c.101]

Выбор области контактных давлений, охватывающей интервал Os < (/max НВ, обусловлен нреждв всего ее практической неизученностью. В настоящее время точное определение деформаций и напряжений в реальных условиях трения не представляется возможным как вследствие локальности процесса, так и из-за значительного их градиента по глубине. Аналитическое решение этой задачи, основанное на достижениях теории упругости и теории пластичности, получено соответственно только для областей упругого и пластического контактов [20, 22]. Область упругопластических деформаций пока не поддается аналитической оценке. Предложенные в Гб] критерии перехода от упругого контакта к пластическому через глубину относительного внедрения являются в достаточной степени условными, так как не учитывают сил трения. При трении, как и при статическом вдавливании индентора, до сих пор нет однозначного критерия пластичности, который указывал бы на условия наступления пластической деформации [96]. Если при одноосном нагружении пластическая деформация металла начинается при напряжениях, равных пределу текучести, то при трении вследствие сложного напряженного состояния несущая способность контакта повышается и пластическая деформация начинается при значениях q = ds, где Ts — предел текучести с — коэффициент, который в зависимости от формы индентора, упрочнения и т. д. может меняться в значительных пределах (от 1 до 10) [6, 97]. В связи с тем что структурные изменения являются комплексной характеристикой состояния поверхностного слоя, представляется целесообразным их исследование именно в унругопластической области, где они могут служить критерием степени развития пластической деформации, критерием перехода от упругого контакта к пластическому.  [c.42]

Для расчета напряжений и деформаций деталей (во времени) при бегают к теории ползучести. При этом предполагают, что для данны> металлов известны некоторые константы и другие опытные данные Естественно, что наиболее приемлемой является такая теория, которая меньше искажает опытные данные и основывается непосредственно на опытных кривых. При этом очень важно, чтобы пользование этой теорией не приводило к таким математическим трудностям, которые не позволят использовать эту теорию в практике инженерных расчетов деталей паровых турбин. Главные из теорий ползучести — теория течения, тео-рия старения, теория упрочнения и теория пластической наследственности. Имеются различные варианты, и формулировки этих теорий. Ряд теоретических работ и экспериментов показал, что наиболее проверенной (кроме того и доступной для инженерной практики), является теория старения. Первоначально она была сформулирована Зодербергом, далее развита академиком Ю. Н. Работ-новым [104]. Теория не универсальна,  [c.17]

В процессе пластической деформации происходит взаимодействие дефектов кристаллической решетки, в частности, дислокаций, которое обусловливает деформационное упрочнение металлов. Современные теории стремятся объяснить наблюдаемые экспериментальные кривые деформационного упрочнения и определить зависимости напряжений и деформаций, исходя, в основном, из расположения и взаимодействия дислокаций. Справедливость различных теорий, каждая из которых содержит ряд произвольно выбранных параметров, обусловливается большим или меньшим соответствием экспериментальным данным [53]. Принципиально новые научные положения о стадийности пластической деформации, рассмотренные выше, отражают развитие и накопление в материале повреждений — деструкционный характер деформирования. Изучение напряжений и деформаций и их соотношения при деформировании с позиций выявления и оценки нарушений сплошности в материале и полученные в этом направлении результаты позволили установить закономерности поведения материала, вскрывающие деструкционный характер деформирования. Впервые на диаграммах напряжение — деформация выявлена критическая точка, которая определяет переход к преимущественно деструкционной стадии деформации. На основании параметров диаграммы 5—61/2 разработаны пути количественной оценки степени деструкции пластически деформированного металла.  [c.22]


В книге описаны методы расчета практически важных процессов пластического деформирования металлов на основе теории пластического течения с учстом упрочнения, анизотропии и сложной формы изделии. Издание рассчитано на исследователей, конструкторов, металлургов и машиностроителей, занятых изучением процессов обработки металлов давлением.  [c.2]

Анализ причин торможения дислокаций в чистых монокристаллах показывает, что каждая из них может вносить свой вклад в наблюдаемое деформационное упрочнение. Существующие теории деформационного упрочнения исходят обычн ) лишь из какой-либо одной причины торможения. Кроме того, эти теории используют допущения, заметно упрощающие реальную сложную картину пластической деформации. Именно сложность, многообразие процессов, сопровождающих деформационное упрочнение, до сих пор не позволили создать общей теории упрочнения даже для металлов с одной решеткой.  [c.118]

Приведенные урав]1ения связи напряжетп и деформаций лежат в основе теории так называемых малых пластических деформаций. Особенностью этих уравнений является то, что коэффициент пропорциональности зависит и определяется упрочнением металла и, следовательно, представляет собой функцию деформации. В другой теории, а именно так называемой теории пластического течения, положена за основу связь напряжений со скоростями деформаций (приращениями деформаций). Предпосылки для установления этой связи аналогичны указанным ранее прн рассмотрении связи напряжений и деформаций  [c.139]

Свойства ПС формируются в результате упругопластических деформаций, нагрева (охлаждения), адгезионных и диффузионных процессов, химического взаимодействия с окружающей средой. В процессе обработки ПС подвергается неоднородной по глубине пластической деформации, которая может сопровождаться структурными изменениями. Происходит дробление зерен на фрагменты и блоки с угловой их разориентацией. У поверхности они измельчаются и вытягиваются в направлении усилия деформирования. В результате пластической деформации металл ПС упрочняется. Деформационным упрочнением или наклепом называют увеличение степени пластической деформации и сопротив1.жия деформированию. С точки ения дислокационной теории деформационное упрочнение является результатом возникновения в пластически деформированном металлическом кристалле большого числа дислокаций и вакансий, их взаимодействия и передвижения под влиянием полей напряжений.  [c.47]

Эта модель с условием текучести (4.7) отличается от модели теории пластичности для металлов, в которой /2 принимается или постоянным в процессе пластической деформации (идеальная пластичность), или зависящим от характеристики пластической деформации (упрочнение). Соотношение (4.7) является условием типа идеальной пластичности, в котором предел текучести зависит от первого инварианта тензора напряжений— давления р. Это условие есть условие типа Мизеса — Шлейхера.  [c.35]

Кривая одноосного растяжения малоуглеродистой стали с разгрузкой испытуемого образца (рис. 58) показывает, что остаюч-деформация измеряется отрезком ОО. Пластическая деформация начинает проявляться на участке АВ и происходит без увеличения нагрузки. На участке ВС происходит упрочнение материала, поэтому угол наклона касательной к кривой ВС и к оси абсцисс tg р называют модулем упрочнения. Упрочнение имеет направленный характер, т. е. материал меняет свои механические свойства и приобретает деформационную анизотропию, при этом пластическая деформация растяжения ухудшает сопротивляемость металла при последующем его сжатии (эффект Ба-ушингера). Как видно из приведенной кривой, растяжение малоуглеродистой стали при пластических деформациях нагруженного и разгруженного образца значения деформаций для одного и того же напряжения . в его сечении не является однозначным. Методы теории пластичности, наряду с изучением зависимости между компонентами напряжений и деформаций, возникающих в точках тела, определяют величины остаточных напряжений и деформаций после частичной или полной разгрузки дetaли, а также напряжения и деформации при повторных нагружениях.  [c.96]

Дан анализ структуры и свойств чистых металлов и сплавов, монокристаллов и поликристаллических агрегатов при пластической деформации с привлечением теории дислокаций. Приведены современные физические представления о механизмах пластической деформации, явлений упрочнения, разупрочнения, разрушения, тексту-рообразования в зависимости от типа кристаллической решетки, вида легирования, температуры и скорости деформации, размера зерна, фазового состояния и др. Рассмотрены физические основы разработки новой и усовершенствования суш.ествующей технологии обработки давлением, включая ТМО и обработку в условиях сверхпластичности.  [c.2]

При пластической деформации в поверхностном слое металла происходит сдвиг в зернах металла, искажение кристаллической решетки, изменение формы и размеров зерен, образование текстуры. Образование текстуры и сдвиги при пластической деформации повышают прочность и твердость металла. Упрочнение (наклеп) металла под действием пластической деформации согласно теории дислокаций заключается в концентрации дислокаций около линии сдвигов, а так как дислокации окружены полями упругих напря-.жёний, то для последующих пластических деформаций (т. е, для, перемещения дислокаций) необходимо значительно большее напряжение, чем в неупрочненном металле.  [c.76]

В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]

В результате изучения влияния длины образца на циклическую прочность нестабильных аустенитных и аустенито-мартенситной сталей 30Х10Г10, 44Х10Г7, 70Х7Н7 было установлено ( 206], что статистическая теория прочности хотя и удовлетворительно объясняет экспериментальные данные по масштабному фактору, но не учитывает всех условий, при которых происходит пластическая деформация, в частности структурных изменений, нагрева образца в процессе циклического нагружения, теплоотвода и др. На выносливость сталей при знакопеременном изгибе с вращением помимо статического фактора существенное влияние оказывает кинетический фактор, а также соотношение и интенсивность процессов упрочнения и разупрочнения при непрерывном нагружении различных по величине объемов металла.  [c.134]


Смотреть страницы где упоминается термин Теория пластического упрочнения металлов : [c.15]    [c.257]    [c.130]    [c.17]    [c.17]    [c.106]    [c.183]   
Смотреть главы в:

Пластичность и разрушение твердых тел Том1  -> Теория пластического упрочнения металлов


Пластичность и разрушение твердых тел Том1 (1954) -- [ c.463 ]



ПОИСК



Основы теории упрочнения металлов при пластической деформации и разупрочнения деформированных металлов при нагреве

Пластическое упрочнение

Теория металлов

Упрочнение

Упрочнение металлов

Упрочнение теории



© 2025 Mash-xxl.info Реклама на сайте