Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сдвиг пластический

Под действием касательных напряжений происходит незначительная перестановка атомов (рис. 17), дислокация смещается в новое положение P Q. Экстраплоскость при этом не переместилась и передала свои функции соседней плоскости Р Q. При дальнейшем действии внешних сил дислокация перемещается влево и, дойдя до границы кристалла, образует на нем ступеньку в один период решетки, т. е. образуется сдвиг — пластическая деформация, не сопровождающаяся переносом масс.  [c.54]


Металл состоит из отдельных беспорядочно ориентированных кристаллов неправильной формы — зерен. При повторных нагружениях в отдельных наименее благоприятно ориентированных зернах, расположенных в зоне действия максимальных напряжений, возникает сдвиг —пластическая деформация. При повторных на-  [c.97]

В равенстве (I, д) было принято (предварительно) очень простое условие, что при простом сдвиге пластическое течение начинается, когда касательное напряжение достигает некоторой величины хт. Это условие может быть названо условием текучести Сен-Венана. Из предыдущего параграфа видно, что это условие текучести не является вполне удовлетворительным.  [c.112]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


Низкий предел пластичности кристаллов, объясняется линейными структурными дефектами — дислокациями, обладающими большой подвижностью, уже при малых напряжениях сдвига. Пластический сдвиг осуществляется движением отдельных дислокаций, а не одновременным трансляционным перемещением одной половины кристалла относительно другой.  [c.133]

Следовательно, при чистом сдвиге пластическая деформация начнётся в материале тогда, когда касательное напряжение достигнет величины То даваемой формулой (14.40), которая и будет пределом текучести при чистом сдвиге. Этот вывод подтверждается опытными данными.  [c.380]

Металл состоит из отдельных беспорядочно ориентированных кристаллов неправильной формы - зерен. При повторных нагружениях в отдельных, наименее благоприятно ориентированных, зернах возникает сдвиг — пластическая деформация. При многократных повторных нагружениях в противоположные стороны в неблагоприятно ориентированных зернах по линиям скольжения постепенно развивается трещина — она проходит через все зерно, пересекает границу и распространяется на соседние зерна. Постепенно трещина разрастается. Сечение неослабленного металла все уменьшается, и при каком-то очередном нагружении металл внезапно разрушается от усталости.  [c.49]

Чистый сдвиг. Пластические деформации происходят главным образом вследствие возникновения соответствующих сдвигающих напряжений. Поэтому исследование сдвигающих напряжений является очень важным для теории обработки металлов давлением.  [c.22]

Кроме сдвигов, пластическая деформация может происходить путем двойникования, при котором сдвинутая часть кристалла занимает симметричное положение по отношению к остальной части.  [c.206]

Фиг. 46. Влияние термической обработки на мо дуль сдвига пластически деформированной стали 30 [74]. Состав стали см. фиг. 45. Фиг. 46. <a href="/info/58155">Влияние термической обработки</a> на мо дуль сдвига пластически деформированной стали 30 [74]. Состав стали см. фиг. 45.
Энергетическая теория пластичности принимает, что пластические деформации при сложнонапряженном состоянии возникают при а,- = От (о т —предел текучести). Это положение в целом хорошо подтверждается экспериментами. Из него, в частности, вытекают некоторые важные в практическом отношении следствия. При трехосном растяжении или сжатии отдельные компоненты могут заметно превосходить предел текучести металла, но при этом 0 < От и пластические деформации не возникнут. При двухосном напряженном состоянии, когда = —о , а 02 = О, что соответствует чистому сдвигу, пластические деформации начнутся при максимальном напряжении = д / З <с 0,.  [c.86]

В этом параграфе мы рассмотрим контактное взаимодействие при наличии как нормальных, так и тангенциальных нагрузок, под действием которых имеет место скольжение или по крайней мере начальное проскальзывание. Описанный ниже подход может быть применен главным образом для исследования взаимодействия неровностей на поверхностях скольжения пластичных тел и вследствие этого имеет отношение к теории трения и износа (см. [40]). Наиболее простой пример полностью решенной задачи этого круга касается сжатия и последующего сдвига пластического клина [190]. Перейдем к изло-Кению этого примера.  [c.268]

При пластическом деформировании одна часть кристалла перемещается (сдвигается) по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла пе возвратится на старое место деформация сохранится. Эти сдвиги обнаруживаются при микроструктурном исследовании, ак это, например,, по казано на рис. 41.  [c.61]

Каков же механизм пластического сдвига  [c.65]

Рис. 46, Дислокационная схема пластического сдвига Рис. 46, Дислокационная схема пластического сдвига

Таким образом, объясняется изменение твердости в отожженной (нормализованной) или отпущенной стали, имеющей структуру феррито-цементитной смеси разной дисперсности. Но объяснить так высокую твердость мартенсита нельзя. Высокая твердость мартенсита объясняется тем, что элементарные кристаллические ячейки его искажены, вследствие чего пластическая деформация затруднена и образование сдвигов в мартенсите почти невозможно.  [c.277]

Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиги одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.  [c.360]

Пластические сдвиги наблюдаются у тяжелонагруженных тихоходных зубчатых колес, выполненных из мягкой стали. При перегрузках на мягкой поверхности зубьев появляются пластические деформации с последующим сдвигом в направлении скольжения (см. рис. 8.6). В результате у полюсной линии зубьев ведомого колеса образуется хребет, а у ведущего — соответствующая канавка. Образование хребта  [c.107]

При незначительной деформации скольжение атомных слоев начинается по плоскостям, оптимально расположенным в направлении сдвига. С увеличением деформации скольжение распространяется и на другие плоскости, благодаря чему происходит последовательное распространение процесса пластической деформации по всему монокристаллу. При пластической деформации полированных образцов металла обнаруживают следы скольжения в виде линий скольжения ( у отдельных зерен), группирующиеся в пластинки, пачки, а затем по мере развития деформации в полосы скольжения.  [c.81]

Поскольку можно свести в единую картину различные наблюдения, процесс, возникновения усталостной трещины состоит из нескольких стадий (рис. 168). Трещины зарождаются на первых этапах нагружения в границах кристаллических объемов как результат пластических сдвигов пачек кристаллических плоскостей, параллельных действию максимальных касательных напряжений, т. е. направленных под углом примерно, 45° к растягивающим напряжения. (октаэдрические напряжения). В зависимости от ориентации кристаллитов сдвиги могут происходить в одной плоскости, одновременно по двум (рис. 168, Ш, а, 6) или трем (рис. 168, III, в) плоскостям.  [c.289]

Для плотных металлических решеток дробь ajb близка к единице. Отсюда теоретическое усилие теоретическая прочность) для осуществления сдвига (пластической деформации) примерно в б раз меньше модуля сдвига. Для железа теоретический предел текучести должен быть равен 1300 кгс/мм , тогда ак в действительности для мягкого железа составляет пример1Ю 151кгс/мм2, т. е. в 100 раз меньше.  [c.66]

Понятие предела сдвиговой прочности пришло на смену понятию предельного напряжения сдвига, введенного широко в реологию Е. Бингамом, хотя уже в конце прошлого столетия Ф. Н. Шведовым была показана целесообразность пользов ния величиной, имеющей смысл предельного напряжения сдвига. Только при напряжениях сдвига, превосходящих эту величину, материал может деформироваться как жидкость. Для описания реологических свойств различных легко деформируемых материалов В. П, Воларович в большом числе работ с успехом использовал понятия предельного напряжения сдвига, пластической (бинга-мовской) вязкости и пластичности, как отношения этих величин.  [c.68]

Однако так как рассматриваемая область окружена материалом, оказывающим сопротивление возникновению текучести, то в ней не смогут развиться пластические деформации названной величины. Допустим, что удлинение, отвечающее пределу текучести, составляет 4%. Тогда малый элемент материала должен будет сузиться в поперечных направлениях на 2%. Но в окружающем материале предел текучести не будет достигнут, так что в нем получатся только упругие деформации. Предположим, что предел текучести равен 2100 кг/см , а модуль упругости Е=2 100 ООО кг/см , тогда упругие деформации в осевом направлении равны 0,001, а в поперечных направлениях 0,0003 (считая коэффициент Пуассона равным V—0,3). Таким образом, в материале, окружающем небольшую пластическую область, боковые упругие деформации составляют только три двухсотые части, или 1,5% соответствующих пластических деформаций, возникающих в упомянутой области при условии ее свободного деформирования. Поэтому, помимо малых пластических деформаций, в этой области должны иметь место упругие деформации ). То же может получиться и во многих других более слабых областях. При этом может оказаться, что среднее напряжение превысит значения местного предела текучести тогда дальнейшее увеличение нагрузки постепенно приведет напряжения в образце в состояние неустойчивого равновесия (предполагается, что отсутствуют резкие концентраторы напря-. жения — такие, как резкие выкружки у концов цилиндрической части образца, небольшие отверстия или надрезы). При некоторой более высокой нагрузке становится возможным образование нового типа пластических деформаций, когда последние развиваются без поперечного сужения, а именно образование пластических деформаций простого сдвига в тонком слое образца, наклоненном под углом 45° по отношению к направлению растяжения. В п. 13 гл. XV было показано, что при простом сдвиге пластические деформации в стали возникают при напряжении сдвига т = ао/]/3=0,577ац, где Ор есть нижний предел текучести стали при одноосном растяжении. В случае плоского напряженного состояния простого сдвига X в тонком слое AB D материала (фиг. 273), наклоненном  [c.347]


В реальных металлах сдвиг (пластическое деформирование) происходит при напряжениях меньше теоретических в сотни и тысячи раз. Например, для железа Ттеор 260 кгс/мм , Треальн 29 KГ /MM ДЛЯ МеДИ  [c.170]

По результатам расчета построены зависимости толщины пощнтия от предельного напряжения сдвига,пластической вязкости, плотности противоворрозхюнного состава.  [c.140]

Способность СОЖ проникать в подбрусковое пространство определяется смачиванием и растеканием жидкости по поверхности обрабатываемого металла по методике, приведенной в [9]. Показателем способности СОЖ облегчать разрушение металлического объекта при суперфинишировании и хонинговании является удельная работа образования новой поверхности. Учитывая определяющее влияние на режущую способность брусков при хонинговании и суперфинишировании реологических и структурно-механических свойств системы, состоящей из СОЖ, продуктов износа инструмента и диспергирования металла, необходимо определить ее предельное напряжение сдвига, пластическую вязкость.  [c.327]

Выше отмечалось, что пластическое деформиравание представляет собой прО Цесс сдвига части кристалла по отношению к другой.  [c.65]

Рассмотренная схема пластической деформации пск1Боляет сделать вывод, что процесс сдвига в кристалле будет происходить  [c.68]

Следовательно, пластическое деформирование железа при бОО С следует рассматривать как горячую обработку, а при 400°С — как холодную. Для свинца и олова пластическое деформирование даже при комнатной температуре является по существу горячей обработкой, так как температура 20°С выше температуры рекристаллизации этих металлов. Этп металлы н практи е называют ненаклепываеыы.ми, хотя при деформировании у них образуются линии сдвига (что показывает, например, характерный хруст оловянной пластинки при ее изгибании).  [c.88]

Описанный в п, 4 этой главы механизм мартенситного превращения — бездиффузи-онность и ориентированность— обусловливает большую зависимость структуры мартенсита от исходной структуры аустенита. Как и сдвиг при пластической деформации, так и мар-тенситная пластина развивается внутри зерна аустенита, разрастаясь от края до края. Значит, чем крупнее зерно аустенита, тем длиннее образующиеся мартенситные пластины. На рис. 223 показано, что в крупном зерне аустенита образовались крупные иглы мартенсита, а в мелких зернах аустенита — мелкие мартенситные иглы, Поскольку пластические свойства и особенно вязкость мартенсита и продуктов его распада (до тех температур отпуска, при которых сохраняется игольчатость микроструктуры) с огрублением структуры сильно ухудшаются (твердость практи-  [c.278]

Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]

Если металл обладает низкой способностью к пластической деформации (хрупкое состояние), он склонен к внезапным хрупким разрушениям (разрушениеотрывом) если же — значительной способностью к пластическим деформациям (вязкое состояние), то может наступить вязкое разрушение (разрушение сдвигом — срезом, рис. 7.3).  [c.82]

Процесс нарушения когерентности сопровождается уменьшением напряжений температура его окончания является температурой снятия напряжений II рода (стц)- Одновременно снимаются напряжения III рода(стш). Уменьшение блоков а-фазы происходит не только из-за нарушения когерентности решеток, но и вследствие снятия упругих напряжений в результате пластических сдвигов в микрообластях под воздействием значительных упругих напряжений в условиях повышенной пластичности металла. Температуры, при которых происходит дробление блоков, и соответствующие температуры, при которых изменяются механические свойства, могут изменяться под влиянием упругих напряжений кристаллической решетки, определяемых степенью деформации, содержанием С и легирующих элементов. При третьем превращении могут протекать начальные стадии рекристаллизации твердого раствора (а-фазы), деформированного в результате внутрифазового наклепа.  [c.109]

В применении к мащиностроительным деталям это означает, что работоспособность детали нарушается задолго до того, когда напряжения сдвига в сечении детали достигнут опасной величины. Деталь выходит из строя в результате концентрации напряжений в поверхностном слое, сопровождаемой местным смятием и пластической деформацией на участке приложения срезающей силы. Особенно резко выражено это явление в случае среза цилиндрических деталей, когда напряжения сосредоточиваются на малой дуге поверхности, ближайщей к действию силы. Смятие тем больще, чем мягче материа.ч срезаемой детали по сравнению с материалом срезающей детали и чем больще жесткость последней.  [c.144]

Как видно из предыдущего, деление на напряжения первого, второго и третьего родов является условным. Все они тесно переплетаются друг с другом и могут быть местными, зональными и общими. Для практических целей существенно, что внутренние напряжения могут действовать разупрочняюще и упрочняюще. Опасны напряжения того же знака, что и рабочие, например разрывающие напряжения в случае растяжения. Благоприятны напряжения, знак которых противоположен знаку рабочих, например сжатия в случае растяжения. Следует отметить, что внутренние напряжения одного знака всегда сопровождаются Появле нием в смежных объемах уравновешивающих напряжений противоположного знака относительная величина напряжений разного знака зависит от протяженности охватываемых ими объемов. Таким образом, опреде-ляющихг для прочности является, во-первых, расположение и ориентация напряженных объемов относительно действующих рабочих напряжений и, во-вторых, величина внутренних напряжений, одноименных и одинаково направленных с рабочими напряжениями. Неоднородности, создающие очаги повышенных разрывающих напряжений, нарушающие сплошность металла, вызывающие появление трещин и облегчающие местные пластические сдвиги, являются дефектами металла. Неоднородности, создающие общирные зоны сжимающих напряжений, способствующие уплотнению металла и препятствующие возникновению и распространению пластических сдвигов, являются упрочняющими факторами.  [c.153]


Еще недавно считали, что процесс пластической деформации заключается в одаовремен-ном сдвиге кристаллических плоскостей одной относительно другой. Это представление не вяжется с большой величиной усилий, необходимых для преодоления атомных связей на плоскостях скольжения. Сейчас общепрязнана теория, согласно которой сдвиг происходит не сразу, а последовательными этапами (эстафетно).  [c.171]

Сплавы а + р поддаются гтермомеханической обработке (пластическая деформация на 40-60% при 850°С, закалка и старение при 500—550°С), в результате которой дополнительно увеличивается прочность на 20 — 30% при сохранении и даже повышении пластичности. Плотность- титановых сплавов 4,5.кг/дм , модуль нормальной упругости 11500 — 12000 кгс/мм , модуль сдвига 4000 - 4300 кгс/мм , коэффициент линейного расширения в интервале- 0—100°С равен (8 10)-10 С  [c.187]

Развитие усталостных поЬреждений схематически представлено на рис. 160. На первых стадиях нагружения возникают, сначала в отдельных кристаллических объемах, пластические сдвиги, не обнаруживаемые обычными экспериментальными методами (светлые точки). С повышением числа циклов и уровня напряжений сдвиги охватывают все большие объемы и переходят в субмикроскопические сдвиги, наблюдаемые с помощью электронных микроскопов (точки со штрихами). При определенном числе циклов и уровне напряжений (кривая 1) образуется множество трещин, видимых под оптическим микроскопом (заштрихованные точки). Начало образования металлографически обнаруживаемых трещин условно считают порогом трещинообразован и я. У низколегированных и углеродистых сталей первые трещины появляются при напряжениях, равных 0,7 —0,8 разрущающего напряжения у высоколегированных сталей и сплавов алюминия и магния микротрещины обнаруживаются уже при напряжениях, равных 0,4—0,6 разрушающего напряжения. Порог трещинообразования снижается с укрупнением зерна.  [c.278]

Если напряжения продолжают действовать, то процесс повреждения развивается. Постепенно распространяясь, дислокации выходят на поверхность зерна (рис. 169, 6). Здесь их движение приостанавливается главнььм образом из-за препятствия, создаваемого иной кристаллической ориентацией смежных зерен разориентированность кристаллических поверхностей приводит к заклиниванию пластических сдвигов.  [c.290]


Смотреть страницы где упоминается термин Сдвиг пластический : [c.585]    [c.138]    [c.268]    [c.108]    [c.47]    [c.48]    [c.144]    [c.151]    [c.288]    [c.291]   
Прикладная механика (1977) -- [ c.286 ]

Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.271 ]



ПОИСК



Деформация пластическая приведенное напряжение сдвига

Интенсивность деформации деформации сдвига при плоской пластической деформации

Интенсивность деформации сдвига при пластической деформации

Интенсивность напряжений сдвига и интенсивность скорости пластический деформации сдви

Интенсивность скорости пластической деформации сдвиг

Маломасштабное пластическое течение в окрестности вершины трещины антиплоского сдвига

Напряжение пластического сдвига

Напряжения в окрестности вершины трещины поперечного сдвига в условиях плоского деформированного состояния в идеально пластическом теле

Общие упруго-пластические свойства сдвигов в твердых телах

Пластическая неустойчивость при сдвиге

Сдвиг двойной пластический

Сдвиг упруго-пластический

Трещина антиплоского сдвига с узкой зоной локализации пластических деформаций



© 2025 Mash-xxl.info Реклама на сайте