Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы, анизотропия

В металлах, имеющих о. ц. к. решетку, анизотропия свойств усиливается при наличии примесей внедрения. В однофазных чистых металлах анизотропия свойств определяется в основном текстурой. После отжига, приводящего к исчезновению текстуры, анизотропия механических свойств исчезает. Легирование, приводящее к образованию твердого раствора или многофазного сплава, хотя и увеличивает предел прочности и иногда величину равномерного удлинения, практически всегда уменьшает сужение поперечного сечения, за исключением тех случаев, когда введение легирующего элемента  [c.433]


Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]

Способность листового металла к пластическому формоизменению — гибке, вытяжке и формовочным операциям, главным образом при штамповке деталей сложной формы, значительно зависит и от анизотропии механических свойств металла. Анизотропия металла состоит в том, что при прокатке лист приобретает различные механические свойства в разных направлениях по отношению к направлению прокатки — вдоль, поперек и под углом. Анизотропия является следствием образовавшейся в процессе прокатки текстуры — предпочтительной ориентировки зерен  [c.27]

Технология прокатки листов в горячем или холодном состоянии, без отжига или с применением отжига после прокатки при том или ином термическом режиме влияет на структуру и на анизотропию металла. Анизотропия металла заключается в том, что механические свойства металла в различных направлениях  [c.79]

В реальных поликристаллических металлах анизотропия упругих свойств обычно существенно меньше, чем в монокристаллах. Обработанные давлением металлы с достаточной для практики точностью могут быть приняты упруго-ортотропными [15], поэтому для расчета их упругих констант в произвольном направлении могут быть использованы формулы (10.1) — (10.4). Для построения полной диаграммы зависимости модуля упругости от направления в плоскости симметрии в соответствии с формулой (10.2) достаточно трех его экспериментальных значений.  [c.331]

Приведенные выше краткие сведения свидетельствуют о том, что для металлов анизотропия может быть весьма существенной и не учитывать ее нельзя. Учет анизотропии должен способствовать, с одной стороны, повышению надежности и долговечности изделий, с другой — наиболее полному использованию возможностей конструкционных материалов.  [c.339]

Так как в процессе вытяжки банок из-за неоднородности физико-механиче-ских свойств металла (анизотропии, неравномерности толщины жести) фланец банки получается неодинаковой ширины, образуются так называемые фестоны, то необходима дополнительная операция — обрубка фланца. Для облегчения процесса вытяжки, устранения обрывов и складок и уменьшения усилий, возникающих при вытяжке, радиусы закругления матрицы и пуансона г принимают возможно большими (от 10 до 25 толщин жести) [12]. Однако для последующей закатки банки необходимо иметь равномерный фланец и вполне определенный радиус отбортовки фланца (см. рис. 10). Поэтому после вытяжки банки должна происходить, кроме операции обрубки фланца, его формовка (получение требуемого радиуса отбортовки).  [c.73]


У полупроводников анизотропия зонной структуры означает, что эффективная масса зависит от направления и возможные эквивалентные экстремумы лежат в разных точках зоны Бриллюэна (при всех ife-векторах звезды, ср. с рис. 40). Следствия этой анизотропии подробно рассмотрены в уже цитированной книге [95]. В металлах анизотропия означает отступление формы поверхности Ферми от сферической, как, например, рассмотренная нами на рис. 33. Один из наиболее важных результатов влияния этой анизотропии наблюдается в гальваномагнитных эффектах у металлов при сильных магнитных полях. Очевидно, что при слабых магнитных полях электрон между двумя столкновениями пробегает только небольшие участки поверхности Ферми, тогда как при сильных магнитных полях описывает замкнутые траектории на поверхности Ферми. Время пробега по порядку величины равно обратной частоте циклотронного резонанса. Граница между сильными и слабыми магнитными полями лежит, следовательно, при о) т=1 или, так как (о = еВ/ст и [х ет/т, при (1/с) fiS=l.  [c.244]

Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом характеристики прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а характеристики пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.  [c.59]

Кованым и, особенно, прокатанным металлам свойственна анизотропия механических свойств в направлениях вдоль и поперек волокон. Особенно резко влияет направление волокон на вязкость (рис. 77).  [c.165]

Анизотропия металлов может быть устранена отжигом лишь частично. Это обязывает при проведении опытов и расчетов конструкций проверять начальную изотропию образцов металлов в  [c.39]

Двойное лучепреломление сохраняется после прекращения действия деформирующей силы, если в теле остаются напряжения. Например, блоки закаленного стекла обнаруживают хорошо выраженную хроматическую поляризацию. Искусственная анизотропия является чувствительным методом наблюдения напряжений, возникающих в прозрачных телах. К сожалению, большинство технически важных материалов (металлы) непрозрачно, поэтому данный метод непосредственно к ним не применим. Однако оптическим методом можно проводить исследования напряжений на моделях из прозрачного изотропного материала (обычно из оргстекла). Выполненная из такого материала модель детали, подлежащей исследованию, ставится под нагрузку, имитирующую ту, которая имеет место в действительности, и по картине между скрещенными поляризаторами изучают возникающие напряжения, их распределение, зависимость от соотношения частей модели и т. д. Этот метод исследования называется методом фотоупругости.  [c.64]

Следует отметить, что условия изготовления, а также различные виды механической обработки вносят в металл более или менее существенную анизотропию и неоднородность, поэтому всегда имеет место лишь приближенная однородность и изотропность материалов.  [c.66]

Для компенсированных металлов (п, = п ) с замкнутыми ПФ (бериллий, молибден, вольфрам, полуметаллы) p.t.i ад (ол) oS- для всех направлений. Небольшая анизотропия, не зависящая от В, обусловлена несферичностью ПФ. Эффект Холла (и соответственно коэффициент Холла ) — сложная функция S, Г и ориентации кристалла.  [c.738]

В прокатанном металле зерна деформируются в нанравлении прокатки, образуется так называемая текстура. Поэтому свойства образцов, вырезанных в направлении прокатки и в поперечном направлении, будут разным)И. Такая же анизотропия возникает практически при всех видах обработки металлов давлением. Однако анизотропия упругих свойств, связанная с наличием текстуры, невелика разницей в модулях упругости стержней, оси которых ориентированы в направлении прокатки и в поперечном направлении, можно пренебречь. Однако пластические свойства  [c.40]

ДЛЯ ЭТИХ направлений, предел упругости или предел текучести разнятся уже заметно. Надлежащая термическая обработка деформированного металла снимает анизотропию или, по крайней мере, уменьшает ее.  [c.41]


Отдельно взятый кристалл металла анизотропен. Но если в объеме содержится весьма большое количество хаотически расположенных кристалликов, то материал в целом можно рассматривать как изотропный. Поэтому обычно предполагают, что металлы в той мере, в какой с ними приходится иметь дело в инженерной практике, изотропны. Встречаются и анизотропные материалы. Анизотропна, например, бумага полоски, вырезанные из листа бумаги в двух взаимно перпендикулярных направления, обладают различной прочностью. Существует анизотропия тел, связанная с их конструктивными особенностями. Так, анизотропна фанера, анизотропны ткани. В настоящее время широкое распространение получили композиционные материалы.  [c.13]

Видно, что большинство металлов имеет заметную упругую анизотропию.  [c.25]

Можно перечислить ряд факторов, которые в той или иной степени могут влиять на результаты пластометрических исследований, проведенных по различным методам испытаний 1) тип кристаллической решетки металла, анизотропия свойств и состояние поставки образцов 2) эффект динамики нагружения и жесткости испытательной машины (особенно при растяжении) 3) роль гидростатического давления и масштабного фактора при различных видах испытаний 4) роль теплового эффекта пластической деформации и температурного градиента по длине и сечению образца 5) способ крепления образца и контактные условия при испытаниях.  [c.49]

Степень анизотропии прочности на разрыв в продольном и поперечном направлениях Оо/сТдо и срез То/т о (между слоями) для стеклопластиков достигает 2—10, что выше, чем для металлов. Анизотропия упругих свойств выражена слабее, чем анизотропия предела прочности. Механические свойства стеклопластиков зависят от температуры, с повышением температуры прочность снижается.  [c.469]

Собственно металлургическая анизотропия автодеформации под,обно общей анизотропии физических и механических свойств является следствием прежде всего неоднородности макро- и микростроения реального металла, в частности — в поковках и прокатном сорте, наличия ориентированной структуры,строчечности, локализованной разнозернистости, ориентированных карбидных включений и т. п. При прочих равных условиях, литые детали коробятся при термических операциях меньше деталей, изготовленных из деформированного металла анизотропия автодеформации у них также проявляется слабее.  [c.218]

Лримеры кристаллич. Т. металлич. проволоки и прутки, электролитически осажденные слои, деформированные кристаллич. полимеры (каучук, полиэтилен) примеры молекулярных Т. жидкие кристаллы и ориентированные аморфные полимеры. К Т. относятся и. ъи ктреты. Характер образовавшейся Т. определяется условиями ее получения. Наир., па Т. рекристаллизации металлов сильно влияют температурный режим, предшествующая обработка и незначит. содержание примесей, а Т. деформации тголимеров чувствительны к геометрии образцов, темн-ре и скорости деформации. Наличие ориентации в Т. влияет на многие структурно чувствительные свойства материалов на прочность и твердость металлов, анизотропию магнитных, онтич, и электрич. свойств различных сред. Прочность текстильных волокон в значит, степени обусловлена их текстуриро-ванным состоянием.  [c.126]

Ферриты — это ферромагнитные полупроводники и диэлектрики, обычная химическая формула которых МеОГеаОз (Ме — двухвалентный металл). Анизотропия феррита так же, как и в плазме, создается постоянным или медленно изменяющимся (по сравнению с полями распространяющихся в феррите волн) магнитным полем. При Н = 0 магнитная проницаемость феррита — скалярная величина.  [c.135]

Наличие такой полосчатой структуры вызывает сильную анизотропию свойств, т. е. различие свойств образцов, вырезанных вдоль и поперек прокатки. В основном снижение так называемых поперечных свойств проявляется на характеристиках, связанных с заключительной стадией деформации (ударная вязкость, относительное сужение), другие механические свойства менее чувствительно реагируют на полосчатость. Анизотропию свойств характеризуют отношением ХпопДпрод, где X — свойство металла в (поперечном и продольном наяравле-ниях. Обычно ударная вязкость в поперечном направлении вдвое меньше, чем в продольном (соответственно коэффициент анизотроппи 0,5) путем повышения чистоты металла по сере и кислороду, используя усовершенствованные методы выплавки пли уменьшая строчечность совершенствованием методов прокатки ( поперечная прокатка ), коэффициент анизотропии ударной вязкости повышается до 0,7—0,8.  [c.191]

Чем больше степень деформации, тем большая часть кристаллических зерен получает преимущественную ориентировку (текстуру). Характер текстуры зависит от природы металла и вида деформации (ирокатка, волочение и т. д.) Кристаллографическую текстуру не следует отождествлять с волокнистой структурой, волокнистость иногда может и не сопровождаться текстурой. Образование текстуры способствует появлению анизотропии механических и физических свойств.  [c.48]

Между тем в металле после горячей обработки давлением (как и в холоднодеформированном металле) проявляетея анизотропия свойств. Причиной этого является текстура рекристаллизации, а также, например в стали, примеси ликвации и неметаллические включения, вытягивающиеся в направлении деформации и располагающиеся рядами между зернами феррита. Такую структуру называют строчечной.  [c.88]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]


Влияние анизотропии теплопроводиост проницаемой матрицы. Многие пористые металлы, например из сеток и волокон, обладают ярко вьь раженной анизотропией физических свойств, в том числе и теплопроводности. Исследуем теплообмен в канале с заполнителем (см. рис. 5.1), теплопроводности которого в поперечном и продольном направлениях существенно отличаются, причем Х , > Х , и сравним его с результатами для однородной пористой вставки с одинаковой во всех направлениях теплопроводностью, равной Х ,. Этим самым оценим влияние уменьшения продольной теплопроводности Х при постоянной поперечной у.  [c.106]

Отметим далее такую важную деталь, что все металлы, подвергаемые той или иной обработке (прокатке, волочению, прессованию), приобретают начальную анизотропию, которая иногда может быть значительной. Например, на рис. 1.16 показаны диаграммы для алюминиевого сплава Д16Т в состоянии поставки для трубки, растянутой в осевом (I) и окружном (2) направлениях, полученные А. М. Жуковым.  [c.39]

Регистрация искусственной анизотропии является очень чувствительным методом наблюдения напряжений, возникающих в прозрачных телах. Его с успехом применяют для наблюдения за напряжениями, возникающими в стеклянных изделиях (паянных и прессованных), охлаждение которых производилось недостаточно медленно. К сожалению, громадное большинство технически важных материалов непрозрачно (металлы), вследствие чего этот прием к ним непосредственно не приложим. Однако в последнее время получил довольно широкое распространение оптический метод исследования напряжений на искусственных моделях из прозрачных материалов (целлулоид, ксилонит и т. д.). Приготовляя из такого материала модель (обыкновенно уменьшенную) подлежащей исследованию детали, осуществляют нагрузку, имитирующую с соблюдением принципа подобия ту, которая имеет место в действительности, и по картине между скрещенными поляризаторами изучают возникающие напряжения, их распределение, зависимость от соотношения частей модели и т. д. Хотя приводимые выше эмпирические закономерности, связывающие измеренную величину По — и величину напряжения Р, позволяют в принципе по оптической картине заключить о численном распределении нагрузки по модели, однако практическое осуществление таких численных расчетов крайне затруднительно. Несмотря на ряд усовершенствований и в методике расчета, и в технике эксперимента, настоящий метод имеет главным образом качественное значение. Однако и в таком виде он дает в опытных руках довольно много, сильно сокращая предварительную работу по расчету новых конструкций. В настоящее время имеется уже обширная литература, посвященная применениям этого метода.  [c.527]

Кривая одноосного растяжения малоуглеродистой стали с разгрузкой испытуемого образца (рис. 58) показывает, что остаюч-деформация измеряется отрезком ОО. Пластическая деформация начинает проявляться на участке АВ и происходит без увеличения нагрузки. На участке ВС происходит упрочнение материала, поэтому угол наклона касательной к кривой ВС и к оси абсцисс tg р называют модулем упрочнения. Упрочнение имеет направленный характер, т. е. материал меняет свои механические свойства и приобретает деформационную анизотропию, при этом пластическая деформация растяжения ухудшает сопротивляемость металла при последующем его сжатии (эффект Ба-ушингера). Как видно из приведенной кривой, растяжение малоуглеродистой стали при пластических деформациях нагруженного и разгруженного образца значения деформаций для одного и того же напряжения . в его сечении не является однозначным. Методы теории пластичности, наряду с изучением зависимости между компонентами напряжений и деформаций, возникающих в точках тела, определяют величины остаточных напряжений и деформаций после частичной или полной разгрузки дetaли, а также напряжения и деформации при повторных нагружениях.  [c.96]

Вывод гамильтониана. Чтобы сформулировать задачу расчета взаимодействия между электронами и фононами в металле, мы выведем здесь выражение для гамильтониана в форме, где с самого начала включено куло-новское взаимодействие между электронами и движениями ионов, но в то же время сделаны некоторые приближения для упрощения уравнений. Например, можно пренебречь анизотропией, которая, по-видимому, не очень существенна для проблемы сверхпроводимости. Предполагается, что колебания решетки можно разделить на продольные и поперечные и что электроны взаимодействуют только с продольными компонентами. Это приближение справедливо для волн с большой длиной волны, но неправильно для коротких волн (исключая некоторые напрапления распространения). Предположим также, как это часто делается в теории Блоха, что матричные элементы для электронно-фононного и кулоновского взаимодействий зависят лишь от разности волновых векторов в начальном и конечном состояниях. При вычислении кулоновских взаимодействий сделаны предположения, которые равнозначны рассмотрению валентных электронов как газа свободных электронов.  [c.757]

Кудреватых Н. В. Магнитные свойства и магнитная анизотропия некоторых интерметаллических соединений редкоземельных металлов с металлами группы железа типа R2T17 Дис, на соиск. учен, степ, канд. физ.-мат. наук. Свердловск Уральский гос. ун-т, 1977.  [c.646]

Если свойства образца, вырезанного из материала, не зависят от его ориентации, материал называется изотропным. В противном случае материал называют анизотропным. В зависимости от того, какой критерий принимается при отождествлении свойств образцов, говорят о механической, оптическох , тепловой и других видах анизотропии. Кристаллы, например, всегда анизотропны, это определяется их внутренним строением, поскольку атомы в кристаллической решетке располагаются совершенно определенным образом. Зная строение кристаллической решетки, можно сделать некоторые выводы о характере анизотропии, например указать плоскости симметрии. Образцы, вырезанные из кристалла симметрично относительно такой плоскости, обнаружат тождественные свойства. Технические сплавы состоят из кристаллических зерен, ориентация которых беспорядочна и произвольна. Поэтому в теле, состоящем из большого числа таких зерен, нельзя указать какое-то предпочтительное направление, отличающееся от других. Поликристаллический металл ведет себя в среднем как изотропное тело. При этом, конечно, предполагается, что размеры образца достаточно велики и он содержит в себе достаточно много кристаллических зерен. Малые образцы, состоящие из небольшого числа зерен, будут обнаруживать разные свойства, но эта разница совершенно случайна, она зависит не от ориентации образца, а от случайных ориентаций составляющих его зерен.  [c.40]

Анизотропия кристаллов объясняется их атомной структурой, но существуют материалы, у которых определяющие их анизотропию структурные элементы имеют значительно большие размеры. Примером может служить древесина, расположение видимых невооруженным глазом волокон создает относительно высокую прочность в направлении оси ствола и малую прочность в поперечном направлении. В этом отношении можно сказать, что природа распорядилась прочностью целлюлозы, из которой, в основном, состоит древесина, наилучншм образом. По этому принципу в технике создают так называемые композитные материалы, примером которых могут служить стеклопластики. Тонкая стеклянная нить имеет высокую прочность, укладывая слои такой нити, пропитывая их смолой и полимеризируя, получают монолитные пластины. Чередуя направления укладки слоев, можно менять степень и характер анизотропии с тем, чтобы использовать прочность волокна наивыгоднейпшм образом. В последние годы были получены и промышленно освоены высокопрочные волокна, значительно превосходящие по своим свойствам стеклянное волокно и, что особенно важно, имеющие значительно более высокий модуль упругости. Наибольшее распространение получили волокна бора и углерода, которыми армируют пластики и металлы.  [c.41]


Анизотропия прочности. Выше рассмотрены случаи разной сопротивляемости разрушению материалов при растяжении и сжатии. Однако эти свойства материалов часто зависят от ориентации направлений главных напряжений по отношению к некоторым характерным для данного материала направлениям. Например, в стеклопластиках и им подобных армированных материалах, в которых в относительно мягкой матрице (пластик, металл) уложена с данной системой ориентации относительно жесткая арматура (стекловолокно, борволокно, углеродные усы и т. п.), прочность на разрыв в направлении армирования существенно выше прочности на разрыв в перпендикулярном направлении. В то же время прочность  [c.170]


Смотреть страницы где упоминается термин Металлы, анизотропия : [c.28]    [c.428]    [c.35]    [c.19]    [c.59]    [c.249]    [c.108]    [c.44]    [c.246]    [c.246]    [c.495]    [c.648]    [c.22]   
Защита от коррозии на стадии проектирования (1980) -- [ c.208 ]



ПОИСК



Анизотропия

Анизотропия листовых металлов

Анизотропия механических свойств кованого металла

Анизотропия свойств металлов

Анизотропия свойств отожженного металла

Анизотропия характеристик прочности металлов

Анизотропия цветных металлов и сплавов

Анизотропия — Регулирование металлов

Затухание в металлах. Анизотропия и литая структура

Металлы, анизотропия деталей важного назначения

Металлы, анизотропия под напряжением



© 2025 Mash-xxl.info Реклама на сайте