Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о напряжении в точке. Тензор напряжений

Понятие о напряжении в точке. Тензор напряжении  [c.6]

В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась. Как с динамической, так и с термодинамической стороны модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь-дело с непрерывными распределениями этих величин в пространстве — скалярными, векторными и тензорными полями. Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие — плотностью распределения объемных сил, а действие поверхностных сил — напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.  [c.9]


В основе перечисленных теорий механики сплошных сред лежат фундаментальные понятия о напряжении и деформации. Последние в рассматриваемой точке тела выражаются тензорами второго ранга.  [c.14]

Xf° — предел прочности при растяжении под углом 45° к направлению главных осей симметрии, а А, ц и р — дополнительные экспериментально определяемые постоянные. Уравнение (70а) справедливо лишь для (ai + аг) 0 если же ( i + 02) О, то предел прочности при растяжении следует заменить пределом прочности при сжатии. Таким образом, для полного описания поверхности разрушения требуется два различных критерия, определяемых в совокупности тринадцатью постоянными. Алгебраическая структура данного критерия не связана непосредственно с первоначальным понятием тензоров прочности, введенных ранее формулами (666). Тем не менее уравнение (70а) по внешнему виду напоминает формулировку критерия через эквивалентные напряжения, если его переписать так  [c.446]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]


В П. т. используется понятие пространства напряжений. В шестимерном пространстве напряжений П декартовы координаты соответствуют компонентам тензора напряжений Oij. Любому напряжённому состоянию в пространстве П соответствует вектор нанряже-вий о с компонентами о . В пространстве П определяется поверхность нагружения 2, ограничивающая все упругие состояния данного элемента тела т. е. все состояния, к-рые могут быть достигнуты из начального без приобретения остаточных деформаций). Напряжённые состояния, соответствующие точкам поверхности нагружения 2, соответствуют пределам текучести при сложном напряжённом состоянии. При изменении напряжённого состояния поверхность нагружения изменяет свою форму.  [c.629]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]


Понятие особенностей, определяемых силовым тензором, было использовано Лауричелла (1895) для представления компонент тензора деформации упругого тела через внешние силы. Вывод формул Лауричелла основан на применении теоремы взаимности Бетти к двум состояниям 1) первое состояние создается поверхностными силами F (при отсутствии объемных), причем через и, Т обозначаются вектор перемещения и тензор напряжения в этом состоянии 2) второе состояние и, Т задается а) действием в точке Q силового тензора, определяющего вектор перемещения и тензор напряжения Т и и б) наложением на это действие напряженного состояния Нг, Та снимающего нагружение поверхности О тела. Вектор перемещения в этом состоянии и тензор напряжения равны  [c.212]

В главе I мы ввели понятие о тензоре напряжений с точки зрения общей теории тензоров формальным и вместе с тем основным признаком тензорного характера напряженного состояния в данной точке является то, что при переходе от координатных площадок к какой-либо произвольной площадке с внешней нормалью v компоненты напряжений Х , К , Z выражаются формулами (1.8а), линейными относительно исходных компонентов (1.16). а также относительно направляющих косинусов I, т, п. При полном преобра- зовании, с переходом от осей х, у, гк новым осям и. v, w. компоненты напряженного состояния в.ыражаются через исходные по формулам вида (1.12) и (1.13), являющимся линейными относительно исходных компонентов (1.16) и квадратичными (или так называемыми билинейными) относительно направляющих косинусов новой системы (1.10).  [c.54]

Несмотря на то, что, как отмечалось, тензорный формализм в настоящей книге ие используется в уравнениях, предполагается, что читатель имеет представление о симметричном тензоре второго ранга из курсов теории упругости и сопротивления материалов, в которых и напряжение и де рмация в точке трактуются как тензоры второго ранга. Тем ие менее, краткая нифор- мация, относящаяся к этому понятию, приводится в подстрочных примечаниях.  [c.5]


Смотреть страницы где упоминается термин Понятие о напряжении в точке. Тензор напряжений : [c.9]    [c.564]    [c.37]   
Смотреть главы в:

Краткий курс теории упругости и пластичности  -> Понятие о напряжении в точке. Тензор напряжений



ПОИСК



Напряжение Понятие

Напряжения. Тензор напряжений

Тензор Понятие

Тензор напряжений



© 2025 Mash-xxl.info Реклама на сайте