Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории поля

Результаты, изложенные в этом разделе с помощью методов Лагранжа и Гамильтона, в своей сущности тождественны результатам, приведенным в предыдущих разделах. Следует, однако, отметить, что при такой ковариантной форме записи требуются значительно более простые исходные выражения. Функция Лагранжа, определенная формулой (10.37), является одним из наиболее простых скалярных выражений, которые можно составить при этом мы предполагаем, что данная функция зависит от таких величин, как Хц, Пц и Лд. Такая точка зрения оказалась весьма полезной при изучении более сложных систем. В следующей главе в связи с этим будут рассмотрены элементы теории поля.  [c.149]


ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ.  [c.39]

ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ. КИНЕМАТИКА СРЕДЫ [гЛ. I  [c.40]

ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ. КИНЕМАТИКА СРЕДЫ [гл. 1  [c.44]

ЭЛЕМЕНТЫ ТЕОРИИ поля. КИНЕМАТИКА СРЕДЫ [гл. I  [c.58]

ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ. КИНЕМАТИК.Ч СРЕДЫ  [c.80]

Элементы теории поля. Ниже будут даны необходимые сведения (преимущественно формального плана) из современной теории поля. Для понимания излагаемой ниже теории необходимо достаточно свободное владение исчислением вариаций (например, в рамках замечательного курса вариационного исчисления [14]). Компактное изложение имеется в [12, рр. 260-264]. Можно рекомендовать также монографию [2, рр. 96-115].  [c.663]

В данной книге главное внимание сосредоточено на методах термодинамики и логических связях между исходными постулатами и их следствиями. Книга не претендует на полноту представления современной термодинамики. Включение в нее элементов теории устойчивости термодинамических систем, равновесий во внешних силовых полях и некоторых других не традиционных, но важных для химической термодинамики проблем проведено ценою сокращения или конспективного изложения других разделов. Поэтому предлагаемая книга ни в коей мере не может заменить собою существующие, но автор надеется, что она послужит полезным дополнением к ним.  [c.5]

Поток вектора и расход. В теории поля потоком вектора сквозь некоторую поверхность S называется интеграл от проекции этого вектора на нормаль к каждому элементу данной поверхности  [c.62]

В настоящей главе излагаются основные положения так называемого метода комбинированных схем для решения нелинейных задач теории поля, в основе которого лежит сочетание метода подстановок с реализацией процесса решения на электрических пассивных моделях, когда нелинейности II и III рода моделируются с помощью устройств, построенных на элементах электронного моделирования.  [c.121]

Правила Фейнмана в квантовой теории поля— правила соответствия между вкладами определ. порядка теории возмущений в матричные элементы матрицы рассеяния и Ф, д. Регулярный вывод ПФ основан на применении Вика теоремы для хронологических произведений к хронологическим произведениям полевых операторов, через интегралы от к-рых выражаются вклады в матрицу рассеяния. В ПФ центр, роль играют пропагаторы квантовых полей, равные их хронологическим спариваниям, т. е. вакуумным ожиданиям от парных хронологических произведений  [c.278]

Книга задумана как учебное пособие, и, разумеется, автор дает необходимые сведения из механики деформируемого твердого тела, с тем чтобы сделать изложение ясным и завершенным. Он приводит теорию поля деформаций и напряжений в точке, описывает элементы теории упругости и пластичности, разбирает многочисленные гипотезы прочности бездефектного материала, дает сведения о коэффициентах концентрации в упругой и пластической областях деформирования.  [c.5]


Представленный материал располагается в следующей последовательности сначала излагаются законы сохранения нелинейной теории упругости в их каноническом варианте [2] и необходимые для дальнейшего элементы теории поля, затем на основании теоремы Нетер (Е. Noether) [3] получена общая форма закона сохранения, соответствующая той или иной вариационной симметрии действия, далее с помощью базовых вариационных симметрий даются канонические определения всех важнейших векторных и тензорных полей нелинейной механики сплошных сред, необходимые для вывода нетривиальных законов сохранения в общем нелинейном случае (в том числе с учетом динамического вклада в функционал действия), и, наконец, обсуждается ограниченный вариант теории вариационных симметрии, развитый в [4]. В качестве дополнения следует рассматривать последний раздел статьи, посвященный лагранжиану пустого пространства. Добавление лагранжиана пустого пространства к лагранжиану физического поля не изменяет условий стационарности действия, хотя и может изменять выражения для канонических тензоров. Понятие о лагранжиане пустого пространства совершенно необходимо для установления степени определенности канонических тензорных полей, входящих в формулировку как классических, так и нетривиальных законов сохранения.  [c.658]

Перюпективным направлением совершенствования математических моделей ЭМУ, применяемых в автоматизированном проектировании, все в большей мере становится направление, связанное с представлением взаимосвязей входных параметров и рабочих показателей объектов в терминах теории поля. При этом частные модели электромагнитных, тепловых, механических процессов объединяются в комплексную модель, позволяющую оценить рабочие свойства объекта как в установившихся, так и в переходных режимах с большей точностью. В качестве метода анализа преимущественное распространение, наряду с традиционными, уже сейчас получает метод конечных элементов, допускающий четкую физическую интерпретацию математических зависимостей, автоматизацию подготовки данных и дающий возможность детального представления протекающих процессов. Получат более широкое применение не только детерминированные, но и вероятностные математические модели объектов, позволяющие имитировать большой спектр воздействия на объект в процессе производства и эксплуатации.  [c.291]

Тензор напряжений в двухфазной упругопластическоп среде. Как указывалось, средняя деформация и среднее напряжение элемента первой фазы прп заданном воздействии определяются не только смещением внешних границ этого элемента, описываемого полем скоростей v(x, t), но и омещешюм межфазных границ внутри этого элемента. Но смещение межфазных границ зависит как от свойств, так и от структуры обеих фаз в смеси. Поэтому в теории движения гетерогенной среды должны учитываться условия совместного поведения или деформирования фаз, которые, кроме физических свойств фаз в общем случае должны учитывать структуру фаз (форму включений, их размер, взаимное расположение). Эффекты прочности твердых фаз могут существенно усложнять указанные условия, которые должны учитывать и различие упругопластических свойств фаз.  [c.146]

Наиболее эффективными методами решения задач теплопроводности G развитием цифровой и аналоговой вычислительной техники становятся численные методы, с помощью которых для заданных численных значений аргументов получаются численные значения искомой функции. К ним относятся метод конечных разностей, метод прямых, метод конечных элементов. Последний, являясь одним из перспективных методов, завоевывает все большее признание, однако широкого распространения пока еще не получил, хотя работа по внедрению его в практику решения задач теории поля в настоящее время ведется довольно интенсивно. В частности, в ИПМаш АН УССР такая работа проводится в направлении использования метода конечных элементов для решения задач теплопроводности и термоупругости на универсальных цифровых, аналоговых и гибридных вычислительных машинах. В данной работе уделим основное внимание лишь методу конечных разностей и методу прямых.  [c.70]


Элементы теории антенн. Прямая задача теории Л. в общем случае состоит в определении поля иэлуче-  [c.93]

В неабелевых калибровочных теориях поля контуру Г ставится в соответствие элемент калибровочной труппы G, к-рый но заданному калибровочному полю А х определяется как упорядоченная вдоль контура экспонента  [c.451]

РЕДУКЦИОННЫЕ ФОРМУЛЫ — правила вычисления элементов матрицы рассеяния (S) в аксиоматической квантовой теории поля (АКТП). Конкретный вид Р. ф. зависит от выбора исходных объектов в конкретном варианте теории. Наиб, прост этот вид для АКТП в формулировке Боголюбова, где исходным объектом является сама 5-матрица, понимаемая как оператор в Фока представлении  [c.307]

Применение общих принципов теории. С. в., как я др. типы взаимодействий элементарных частиц, должны описываться квантовой теорией поля (КТП). Осп. препятствием для построения квантовоиолевых моделей в течение мн. лет была большая величина эфф. константы связи адронов, не позволявшая использовать л1вто-ды возмущений теории, по существу — единственного хорошо разработанного аналитич. подхода в КТП. Поэтому большое развитие в теории С. в. получили методы, к-рые используют общие принципы теории для определения свойств матрицы рассеяния. К числу таких общих принципов относятся унитарность, релятивистская инвариантность, перекрёстная симметрия (кроссинг-симметрия), причинность (см. Причинности принцип). В этом подходе осн. роль играет изучение аналитич. свойств матричных элементов, рассматриваемых как ф-цви комплексных переменных, к-рыми служат кинематич. инвариааты, такие, как квадрат энергии и квадрат передаваемого импульса.  [c.499]

В данной книге излагаются электронно-квантовые основы периодической системы элементов теория химической связи и структура молекул, электрические свойства молекул и методы расчета дипольных моментов зависимость электрических и других свойств от химического состава и структуры мшекул, от внешних факторов (электрическое поле, радиационное излучение, температура, влажность, давление и др.).  [c.3]


Смотреть страницы где упоминается термин Элементы теории поля : [c.72]    [c.14]    [c.122]    [c.218]    [c.237]    [c.474]    [c.534]    [c.453]    [c.235]    [c.319]    [c.95]    [c.399]    [c.609]    [c.126]    [c.639]   
Смотреть главы в:

Линейная механика разрушения Издание 2  -> Элементы теории поля



ПОИСК



Основное состояние молекулы Н20.— Основное состояние молекулы — Основное состояние молекулы СН4.— Основное состояние молекулы С02.— Основное состояние молекулы С2Н4.— Насыщение валентностей.— Основное состояние молекулы С6Н6.— Сопряжение и сверхсопряжение.— Взаимодействие конфигураций.— Модель свободного электрона.— Молекулы, содержащие атомы переходных элементов (так называемая теория поля лигандов) Возбужденные состояния

Теория поля

Уравнения метода конечных элементов задачи теории поля

Элементы теории монотонных векторных полей

Элементы теории поля. Кинематика сплошной среды Поле физической величины. Скалярное и векторное поля Поверхности уровня. Векторные линии и трубки



© 2025 Mash-xxl.info Реклама на сайте