Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сен-Венана задача 418, 660,— принцип,

Исследованы некоторые особенности погранслоя в эластомерном теле с кинематическими граничными условиями па поверхностях, выявлены случаи нарушения в этих задачах принципа Сен-Венана.  [c.50]

Сдвиг 164, 380, 384, сдвига стационарные значения 181 Сен-Венана задача 418, 660, — принцип, см. принцип Сен-Венана Сжатия модуль, см. модуль объемного сжатия  [c.671]

Возможность замены указанной выше системы сил на внутренней поверхности полусферы их равнодействующей обусловлена возможностью приложения в рассматриваемой задаче принципа Сен-Венана.  [c.158]


Замечание о фактическом решении основных задач. Принцип Сен-Венана. Решение упомянутых выше основных граничных задач для общего случая представляет на практике громадные затруднения, если имеется в виду фактическое осуществление вычислений. Так называемые общие методы дают в общем случае) только теоретическое решение, т. е. в конечном счете доказывают лишь существование его ).  [c.79]

Важным вспомогательным средством для решения задач теории упругости (справедливым не только для линейных, но и для нелинейных задач) является так называемый принцип Сен-Венана . Этот принцип утверждает, что если некоторая совокупность внешних сил, действующих на малой площадке поверхности тела, будет заменена другой системой внешних сил, статически эквивалентной предыдущей и распределенной на том же элементе поверхности тела, то эффект этих различных нагрузок будет (на достаточном удалении от места приложения сил) одинаковым, т. е. поля напряжений, соответствующие данным двум нагрузкам, будут отличаться друг от друга только в непосредственной близости от района действия сил.  [c.237]

Напряженное состояние, возникающее в тонкой пластине, работающей без изгиба, принято называть обобщенным плоским напряженным состоянием. В этом случае (на достаточном расстоянии от кромки пластины) не имеет значения по какому закону компоненты внешней нагрузки /д, и /у распределены вдоль оси г две нагрузки, у которых интегральные характеристики (4.12) одинаковы, следует считать приблизительно эквивалентными (в смысле близости вызываемых ими полей напряжений). Последнее становится ясно, если применить к этой задаче принцип Сен-Венана. Именно поэтому в данной задаче целесообразно интересоваться лишь осредненными по толщине напряжениями и перемещениями.  [c.303]

Значение этого принципа состоит в том, что он позволяет изменять распределение внешних воздействий на границе тела таким образом, чтобы решение задачи становилось более простым (и даже в некоторых случаях выражалось в виде простых формул). Другими словами, при использовании принципа Сен-Венана отказываются от точного удовлетворения граничных условий и проверяют эти условия лишь в интегральном смысле—в смысле равенства главных векторов и главных моментов внешних воздействий и внутренних напряжений на границе.  [c.64]

Будем решать задачу об определении напряженно-деформированного состояния цилиндра с использованием принципа Сен-Венана. Предположим, что перемещение некоторой точки О на So равно нулю, так же как и тензор вращения в этой точке, и выберем начало декартовой системы отсчета в этой точке. Ось Охз направим параллельно образующим цилиндра, а оси Oxi и 0x2 расположим в плоскости сечения Sn. Пусть главный вектор внешних воздействий на равен Р, главный момент —М. Тогда  [c.64]


Принцип Сен-Венана хотя и не имеет строгого доказательства, но подтверждается опытом решения многочисленных задач. Им пользуются для получения приближенных решений, заменяя заданные условия на поверхности статически эквивалентными, по такими, для которых решение задачи теории упругости упрощается. Это называют иногда смягчением граничных условий но принципу Сен-Венана.  [c.48]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Эффективное решение указанных в 34 граничных задач упругого равновесия в общем случае представляет большие трудности. Принцип Сен-Венана в этом отношении занимает особое место в теории упругости. Благодаря этому принципу в настоящее время мы располагаем решениями многочисленных задач теории упругости, ибо принцип Сен-Венана позволяет смягчить граничные условия заданная система сил, приложенная к небольшой части упругого тела, заменяется другой, удобной для упрощения задачи, статически эквивалентной системой сил, приложенной к той же части поверхности тела.  [c.89]

Часто приходится иметь дело с призматическими телами, торцы которых не закреплены и, следовательно, свободны от усилий. В этом случае при условии, что дли 1а тела велика по сравнению с его поперечными размерами, решение можио получить путем наложения на решение задачи о плоской деформации решений задач растяжения и изгиба данного тела (при /1 = /2 = Л = /2 = 0) силой — N моментами — Л1х, и — Мх,, абсолютные значения которых определяются равенствами (9.10) и (9.И). Последние задачи являются простейшими решение их было рассмотрено в гл. IV, 8. В результате получим решение для данного тела при заданных нагрузках = ti ж ), ti = tz (Xi, X2) на его боковой поверхности и, вообще говоря, при некоторой нагрузке на его торцах, главный вектор и главный момент которой равны нулю. Согласно принципу Сен-Венана, полученное решение для точек, удаленных от торцов, будет совпадать с решением для данного тела, торцы которого полностью свободны от усилий. Деформация в этом случае уже не будет плоской иногда ее называют обобщенной плоской деформацией.  [c.226]

В третьей главе обсуждается постановка граничных и начально-граничных задач теории упругости, доказывается их единственность. Рассмотрению двумерных задач предшествует формулировка принципа Сен-Венана и его доказательство в случае нагружения цилиндрического стержня. Далее вводятся общие представления смещений через гармонические и через волновые функции, позволяющие свести некоторые важные задачи теории упругости к одной или нескольким последовательно решаемым классическим краевым задачам. Обстоятельно рассмотрены качественные вопросы, связанные с понятием сосредоточенной силы, нерегулярных решений задач теории упругости, возникающих при наличии на границе угловых линий, конических точек и т. п. Указанные решения легли в основу постановок задач механики хрупкого разрушения.  [c.7]


Заметим, что в задачах кручения и изгиба стержней сами краевые условия на торцах заранее неизвестны и определяются лишь в ходе решения соответствующих двумерных задач (см. 3), однако сделанное на основе принципа Сен-Венана предположение дает возможность перейти от трехмерной (подчас смешанной) к двумерной задаче.  [c.258]

Заметим, что непосредственно из анализа решения частных краевых задач теории упругости (например, из решения задачи для полупространства) было обнаружено, что нагрузки, статически эквивалентные нулю, вызывают вне области порядка участка интегрирования напряжения и перемещения, существенно меньшие, чем при неуравновешенности сил. Это обстоятельство (в сочетании со специальными исследованиями) послужило основанием для появления уже общей формулировки принципа Сен-Венана ), который сводится к трем положениям  [c.264]

Принцип Сен-Венана кроме задач кручения и изгиба используется также при построении теории для плоского напряженного состояния (см. 4), когда для пластинки распределение нагружения по боковой поверхности не учитывается, а сводится к результирующим характеристикам. Другой подход имеет место в задачах изгиба пластинок (и, более того, в теории оболочек). Здесь игнорирование распределения напряжений является следствием гипотез, положенных в основу той или иной теории (как, например, для гипотезы прямых нормалей). В этом случае краевые условия в напряжениях сводятся к изгибающим моментам, крутящему моменту и перерезывающим силам.  [c.265]

Остановимся на принципе Сен-Венана для динамических задач теории упругости [202], где рассмотрена одна частная задача специального вида. Изучалась кусочно-однородная среда (совокупность полос из одного материала, разделенных полосами из другого материала с существенно меньшими значениями упругих постоянных). К торцам первой группы полуполос была приложена статически эквивалентная нулю динамическая нагрузка. Из анализа точного решения задачи было установлено, что напряжения отличны от нуля не только в области, непосредственно примыкающей к участку нагружения, но также и в определенной (малой по протяженности) зоне, примыкающей к волновому фронту.  [c.265]

В качестве одного из простейших примеров рассмотрим задачу о толстостенной трубе иод действием внутреннего давления. Обозначим а — внутренний радиус трубы, Ь — внешний радиус, q — давление (рис. 8.12.1). Будем считать, что труба очень длинная и к торцам ее приложены растягивающие силы Р. Вследствие принципа Сен-Венана можно утверждать, что поперечные сечения ее останутся плоскими и напряженное состояние будет во всех сечепиях одинаково. Очевидно, что эту задачу следует рассматривать в цилиндрических координатах, т. е. пользоваться уравнениями 7.8, считая, что искомые функции зависят только от радиуса г. Тогда уравнения равновесия  [c.267]

Принцип Сен-Венана был сформулирован в главе I. Этот принцип был использован в задаче об изгибе консоли при рассмотрении граничных условий. В задаче о балке на двух опорах под действием равномерно распределенной нагрузки он был применен для смягчения граничных условий. Последняя задача позволяет дать количественную оценку принципу Сен-Венана.  [c.78]

Эти формулы дают распределение напряжений, удовлетворяющее всем граничным условиям ) (а) для чистого изгиба и представляют собой точное решение задачи, если распределение нормальных усилий на концах дается вторым из уравнений (47). Если силы, создающие изгибающий момент М, распределены по торцам стержня некоторым другим образом, распределение напряжений на концах будет отличаться от того, которое дается решением (47). Однако, согласно принципу Сен-Венана, на некотором удалении от концов, скажем, на расстояниях от концов, превышающих высоту сечения бруса, этими отклонениями oi решения (47) можно пренебречь. Это обстоятельство иллюстрирует рис. 102.  [c.90]

При выводе формул для чистого изгиба прямого стержня не было сделано произвольных допущений и найденное решение в этом смысле можно рассматривать как точное. Однако следует иметь в виду, что в рассматриваемой задаче не конкретизирован характер распределения внешних сил. Считается только, что во всех случаях эти силы сводятся к равнодействующим моментам, приложенным к торцам стержня. Решение будет точным только для случая, если внешние силы на торцах распределены по тому же линейному закону, что и во всех поперечных сечениях. Практически это условие, понятно, никогда не соблюдается, и в окрестности торцевых сечений законы распределения напряжений далеки от тех, которые следуют из теории чистого изгиба. В соответствии с принципом Сен-Венана имеется возможность, однако, краевую зону исключить, как это показано, например, на рис. 4.18. Тогда для средней части стержня все выведенные выше формулы сохраняют свою силу и могут рассматриваться как точные.  [c.174]

Разберем это определение на примере деформации стержня, нагруженного через серьгу силой Р (рис. 1.14, а). Прочностной расчет стержня следует начать с замены действия на него серьги системой сил, распределенной по поверхности контакта, след которой АА, образующейся в результате их взаимной деформации. На рис. 1.14,6 схематически показана такая замена. Значение поверхностной интенсивности в каждой точке поверхности контакта может быть получено только методами теории упругости как результат решения сложной математической задачи. Такую задачу следует решать, если представляют интерес напряженное и деформированное состояния в заштрихованной области стержня. Для их определения за пределами этой области следует заменить распределенную нагрузку равнодействующей (рис. 1.14, в), величина которой элементарно находится из условия равновесия серьги (рис. 1.14, г). По принципу Сен-Венана, деформированное и напряженное состояние бруса за пределами заштрихованных областей в схемах нагружения бив будут практически одинаковы.  [c.22]


Задача Сен-Венана. Принцип Сен-Венана  [c.58]

Другим примером использования принципа Сен-Венана является задача о растяжении бруса силами, приложенными к его торцам. В этом случае закон распределения напряжений по сечению бруса на достаточном удалении от торцов не зависит от того, каким образом распределяется  [c.62]

В чем смысл принципа Сен-Венана и каково его значение для решения задач теории упругости  [c.63]

Постановка задач теории упругости. Уравнение Клапейрона. Теорема единственности решения задач теории упругости. Принцип Сен-Венана  [c.341]

Принцип Сен-Венана вытекает из следующего общего свойства решений задач теории упругости. Если в какой-либо малой по сравнению с размерами всего тела части А приложена статически уравновешенная система сил, то она вызывает в нем напряжения, очень быстро убывающие по мере удаления от А. Допустим, что мы зажимаем тисками проволоку, причем концы тисков сжимают проволоку так, что действующая на нее система сил уравновешена. Тогда очевидно, что, как бы ни были велики эти силы (они даже могут перерезать проволоку), они почти не вызовут напряжений в основной мае- се проволоки вне области, непосредственно примыкающей к месту защемления.  [c.349]

Принцип Сен-Венана позволяет получать приближенные решения различных задач теории упругости с помощью решений аналогичных задач для частных распределений действующих сил.  [c.350]

Для развиваемой ниже теории трещин в хрупких телах, в соответствии с принципом Сен-Венана, для правильного определения решений упругой задачи (на основании уравнений импульсов и уравнений совместности для поля состояний упругого тела в целом) нет необходимости вводить действительные или искусственные подходящие внутренние силы сцепления на малых участках уже реализованных бортов разрыва перемещений (вне 2) как внешние макроскопические поверхностные силы, входящие в граничные условия.  [c.538]

Однако если брус является длинным, а площадь сечения бруса мала по сравнению с его боковой поверхностью, то мы можем применить для решения задачи принцип Сен-Венана. В силу этого принципа все системы нагрузок дг, етатически эквивалентные векторам Р, М, вызывают в некотором отдалении от сечения х = I одинаковые поля напряжений и деформаций. В уравнениях (5) — (8) можно принять различные системы нагрузок ди однако они должны быть выбраны так, чтобы интегралы в правой части этих уравнений равнялись одним и тем же составляющим векторов Р, М.  [c.402]

Тем самым для рассмотренного класса задач принцип Сен-Венана справедлив (в указанном выше смысле). Данный вывод, однако, не может быть распространен на периодические нагрузки. Последние могут оказывать влияние на поле напряжений и перемещений по всей длине стержня (независимо от типа нагрузки). Поэтому пренебрегать самоуравновешенной торцевой нагрузкой по сравнению с несамоуравновешенной в последнем случае, вообще говоря, нельзя (см. 39).  [c.226]

При решении задач теории упругости часто обращаются к принципу Сен-Венана. Если при решении задачи граничные условия задаются точно согласно истинному распределению сил, то решение может оказаться весьма сложным. В силу принципа Сен-Венана можно, смягчив граничные условия, добиться такого решения, чтобы оно дало для большей части тела поле тензора напряжений, очень близкое к истинному. Определение тензора напряжений в месте приложения нагрузок составляет особые задачи теории упругости, называемые контактными задачами или задачами по исследованию местных напряжений. На рис. 12 показаны две статически эквивалентные системы сил одна в виде сосредоточенной силы Р, перпендикулярной к плоской границе полубесконечной пластинки, а другая — в виде равномерно распределенных на полуцилиндриче- Кой поверхности сил, равнодействующая которых равна силе Р и перпендикулярна к границе пластинки. В достаточно удаленных  [c.88]

Большое количество задач теории упругости решается с использованием принципа локальности эффекта самоуравновешенных внешних нагрузок—принципа Сен-Венана. Согласно этому принципу, если в какой-либо малой части тела приложена уравновешенная система сил, то она. вызывает в теле напряжения, очень быстро убывающие по мере удаления от этой части (экспоненциальный характер затухания напряжений).  [c.6]

Прежде чем перейти к формулировке второй основной задачи, когда заданы силовые характеристики, необходимо сделать одно разъяснение. Введение интегральных по образующей характеристик, определяющих напряженное состояние, в сочетании с принципом Сен-Венана, дает основание перераспределить истинные напряжения, приводящие к моменту Мпх, таким образом (с сохранением величины момента), чтобы силы были направлены вдоль оси г. В результате придем лишь к фактическому изменению перерезывающей силы на величину дМпх1 5.  [c.283]

Разделы, касающиеся метода фотоупругости, двумерных задач в криволинейных координатах и температурных напряжений, расширены и выделены в отдельные новые главы, содержащие многие методы и решения, которых не было в прежнем издании. Добавлено приложение, относящееся к методу конечных разностей, в том числе к методу релаксации. Новые параграфы, включенные в другие главы, относятся к теории розетки датчиков деформаций, гравитационным напряжениям, принципу Сен-Венана, компонентам вращения, теореме взаимности, общим решениям, приближенному характеру решений при плоском напряженном состоянии, центру кручения и центру изгиба, концентрации напряжений при кручении вблизи закруглений, приближенному исследованию тонкостенных сечений (например, авиационных) при кручении и изгибе, а также к круговому цилиндру при действии пояскового давления.  [c.14]

Замечания. 1. Принцип Сен-Венана не доказан в общем случае, но во всех полученных точных решениях он соблюдался. Принципы, справедливые для широкого класса задач, но не доказанные в общем виде, называются авристи-ческими. Принцип Сен-Вепаиа нринадлежит к числу эвристических.  [c.56]


Смотреть страницы где упоминается термин Сен-Венана задача 418, 660,— принцип, : [c.172]    [c.130]    [c.26]    [c.119]    [c.72]    [c.82]    [c.85]    [c.313]    [c.293]    [c.21]    [c.151]    [c.328]    [c.352]    [c.681]   
Введение в теорию упругости для инженеров и физиков (1948) -- [ c.0 ]



ПОИСК



Замечание о фактическом решении основных задач. Принцип Сен-Венана

Обратная задача теории упругости. Принцип Сен-Венана

Полуобратпый метод Сеи-Венана. Задача Сен-Венана Принцип Сен-Вепапа

Постановка задач теории упругости. Уравнение Клапейрона Теорема единственности решения задач теории упругости Принцип Сен-Венана

Принцип Сен-Вена

Принцип Сен-Венана для неоднородных задач

Принцип Сен-Венана,

Сен-.Вена

Сен-Венан

Сен-Венана задача



© 2025 Mash-xxl.info Реклама на сайте