Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сен-Венана задача

Напряжения. В решении Сен-Венана задачи об изгибе стержня силами отличны от нуля компоненты Oz, Тгх, " уг тензора напряжений. Нормальное напряжение Ог представляется формулой (1.4.6)  [c.430]

Мы воспроизведем в основных чертах знаменитое исследование Сен-Венана задач о чистом изгибе, кручении и изгибе поперечной силой изотропных цилиндров заданного поперечного сечения.  [c.417]

Стр. 135 ( 95). Решение Сен-Венана задачи изгиба и т. д. См. только что упомянутую статью.  [c.658]


Сдвиг 164, 380, 384, сдвига стационарные значения 181 Сен-Венана задача 418, 660, — принцип, см. принцип Сен-Венана Сжатия модуль, см. модуль объемного сжатия  [c.671]

При решении задачи о кручении иногда вместо функции кручения Сен-Венана ф удобно ввести другую функцию F, называемую функцией напряжений Прандтля. Она вводится по формулам  [c.176]

Рассмотрим теперь постановку плоских задач в напряжениях. Для определенности рассмотрим случай плоской деформации случай обобщенного плоского напряженного состояния исследуется совершенно аналогично. Соответствующая краевая задача содержит уравнения равновесия (2.67), граничные условия (2.70) и условия сов.местности Сен-Венана (2.61), которые с учетом выражения для  [c.59]

Значение этого принципа состоит в том, что он позволяет изменять распределение внешних воздействий на границе тела таким образом, чтобы решение задачи становилось более простым (и даже в некоторых случаях выражалось в виде простых формул). Другими словами, при использовании принципа Сен-Венана отказываются от точного удовлетворения граничных условий и проверяют эти условия лишь в интегральном смысле—в смысле равенства главных векторов и главных моментов внешних воздействий и внутренних напряжений на границе.  [c.64]

Будем решать задачу об определении напряженно-деформированного состояния цилиндра с использованием принципа Сен-Венана. Предположим, что перемещение некоторой точки О на So равно нулю, так же как и тензор вращения в этой точке, и выберем начало декартовой системы отсчета в этой точке. Ось Охз направим параллельно образующим цилиндра, а оси Oxi и 0x2 расположим в плоскости сечения Sn. Пусть главный вектор внешних воздействий на равен Р, главный момент —М. Тогда  [c.64]

В качестве примера приложения полученных результатов рассмотрим задачи для функций напряжений в задаче кручения Сен-Венана  [c.119]

Данная задача встречалась в проблеме Сен-Венана для призматических стержней.  [c.202]

На первый взгляд кажется, что условие пластичности Треска — Сен-Венана более простое. Действительно, если главные оси заранее известны, то это условие выражается при помощи линейных функций от компонент тензора напряжений, притом самых простых линейных функций. Но при решении задач теории пластичности мы обычно не знаем, какое напряжение окажется больше, какое меньше мы далеко не всегда можем указать заранее и знак напряжения. Поэтому мы не знаем, на какой стороне шестиугольника окажемся, какую из простых формул нужно применить. А если главные оси заранее неизвестны, то теория Треска — Сен-Венана оказывается существенно более сложной.  [c.58]


Принцип Сен-Венана хотя и не имеет строгого доказательства, но подтверждается опытом решения многочисленных задач. Им пользуются для получения приближенных решений, заменяя заданные условия на поверхности статически эквивалентными, по такими, для которых решение задачи теории упругости упрощается. Это называют иногда смягчением граничных условий но принципу Сен-Венана.  [c.48]

Из шести уравнений совместности деформаций Сен-Венана в плоской задаче остается только одно  [c.73]

Для решения поставленной задачи в перемещениях воспользуемся полуобратным методом Сен-Венана, который, как известно, заключается в задании одних неизвестных функций и отыскании других из уравнений теории упругости. В соответствии с этим методом из трех функций перемещений и, v и w зададимся первыми двумя. Допустим, что все сечения стержня деформируются одинаково и что компоненты перемещений точек в направлении осей х ж у определяются выражениями  [c.133]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Эффективное решение указанных в 34 граничных задач упругого равновесия в общем случае представляет большие трудности. Принцип Сен-Венана в этом отношении занимает особое место в теории упругости. Благодаря этому принципу в настоящее время мы располагаем решениями многочисленных задач теории упругости, ибо принцип Сен-Венана позволяет смягчить граничные условия заданная система сил, приложенная к небольшой части упругого тела, заменяется другой, удобной для упрощения задачи, статически эквивалентной системой сил, приложенной к той же части поверхности тела.  [c.89]

Решение задачи дается в напряжениях полуобратным методом Сен-Венана. Исходя из физических соображений, примем  [c.197]

Решение обратной задачи значительно проще, чем решение прямой задачи. Особенно просто решается обратная задача, если задаться перемещениями щ. При заданных непрерывных функциях щ = = Ui Xk) дифференциальные зависимости Сен—Венана тождественно удовлетворяются и, следовательно, в этом случае они не используются. Решение этой обратной задачи выполняется в следующем порядке на основании формулы закона Гука (4.4) определяются компоненты тензора напряжений atj (Хи), соответствующие принятым функциям и, (лгй), а из уравнений равновесия (4.3) и граничных условий (4.6) определяются внешние силы, при которых осуществляются заданные перемещения.  [c.72]

Если задаваться компонентами тензора напряжений atj (хи), то решение обратной задачи будет несколько сложнее. В этом случае перемещения ыг (х ) находятся интегрированием уравнений (4.1), что возможно, если компоненты тензора деформации (х ), которые определяются формулой (4.5) закона Гука по принятым функциям oij (Xk), будут удовлетворять дифференциальным зависимостям Сен-Венана (4.2). Следовательно, компонентами тензора напряжений oi] (Xfi) надо задаваться так, чтобы выполнялись условия совместности  [c.73]


Сущность полуобратного метода Сен-Венана состоит в том, что при решении конкретной задачи, например, в напряжениях задаются из соображений физического характера задачи некоторыми компонентами тензора напряжений и затем определяют остальные компоненты Oij (xti) из уравнений равновесия (4.3) при выполнении условий совместности Бельтрами—Мичелла (4.51) или (4.54) и граничных условий  [c.81]

Как уже известно, при решении конкретной задачи полуобратным методом Сен-Венана задаются, например, некоторыми компонентами at) тензора напряжений из каких-либо интуитивных соображений, а затем из основных уравнений определя<от остальные компоненты at . При этом может возникать естественный вопрос об однозначности полученного решения. Этот вопрос, возникающий также при решении обратной задачи, снимается теоремой Кирхгофа  [c.91]

Поставленную задачу будем решать в напряжениях полуобратным методом Сен-Венана. По аналогии с известной из сопротивления материалов задачи кручения бруса круглого поперечного сечения допустим, что  [c.132]

Исходя из решения задачи кручения бруса полуобратным методом Сен-Венана в перемещениях, следует считать известными перемещения Ml и U2 на торцах Ха => О и = I (рис. 7.1). На основании (7.51)  [c.178]

Так же как и при кручении изотропного однородного бруса, задачу будем решать полуобратным методом Сен-Венана в напряжениях, предполагая, что  [c.199]

Часто приходится иметь дело с призматическими телами, торцы которых не закреплены и, следовательно, свободны от усилий. В этом случае при условии, что дли 1а тела велика по сравнению с его поперечными размерами, решение можио получить путем наложения на решение задачи о плоской деформации решений задач растяжения и изгиба данного тела (при /1 = /2 = Л = /2 = 0) силой — N моментами — Л1х, и — Мх,, абсолютные значения которых определяются равенствами (9.10) и (9.И). Последние задачи являются простейшими решение их было рассмотрено в гл. IV, 8. В результате получим решение для данного тела при заданных нагрузках = ti ж ), ti = tz (Xi, X2) на его боковой поверхности и, вообще говоря, при некоторой нагрузке на его торцах, главный вектор и главный момент которой равны нулю. Согласно принципу Сен-Венана, полученное решение для точек, удаленных от торцов, будет совпадать с решением для данного тела, торцы которого полностью свободны от усилий. Деформация в этом случае уже не будет плоской иногда ее называют обобщенной плоской деформацией.  [c.226]

Опыты, в которых в качестве направляющей применялся желоб, позволили производить соударение тонких и длинных стержней со скоростями 1—5 м/с, что достаточно просто обеспечивает условия, близкие к допущениям теории Сен-Венана, и получить для скоростей стержней после удара значения, согласующиеся с теорией. Все это можно противопоставить результатам Фойгта и Гамбургера и считать, что разногласий между теорией Сен-Венана и надлежащим образом поставленным экспериментом не существует. Для теории удара это имеет принципиальное значение, поскольку теория продольного соударения стержней Сен-Венана представляет в теоретическом отношении безукоризненно строгое аналитическое решение задачи теории упругости при вполне четких и обоснованных допущениях.  [c.224]

В третьей главе обсуждается постановка граничных и начально-граничных задач теории упругости, доказывается их единственность. Рассмотрению двумерных задач предшествует формулировка принципа Сен-Венана и его доказательство в случае нагружения цилиндрического стержня. Далее вводятся общие представления смещений через гармонические и через волновые функции, позволяющие свести некоторые важные задачи теории упругости к одной или нескольким последовательно решаемым классическим краевым задачам. Обстоятельно рассмотрены качественные вопросы, связанные с понятием сосредоточенной силы, нерегулярных решений задач теории упругости, возникающих при наличии на границе угловых линий, конических точек и т. п. Указанные решения легли в основу постановок задач механики хрупкого разрушения.  [c.7]

Заметим, что в задачах кручения и изгиба стержней сами краевые условия на торцах заранее неизвестны и определяются лишь в ходе решения соответствующих двумерных задач (см. 3), однако сделанное на основе принципа Сен-Венана предположение дает возможность перейти от трехмерной (подчас смешанной) к двумерной задаче.  [c.258]

Заметим, что непосредственно из анализа решения частных краевых задач теории упругости (например, из решения задачи для полупространства) было обнаружено, что нагрузки, статически эквивалентные нулю, вызывают вне области порядка участка интегрирования напряжения и перемещения, существенно меньшие, чем при неуравновешенности сил. Это обстоятельство (в сочетании со специальными исследованиями) послужило основанием для появления уже общей формулировки принципа Сен-Венана ), который сводится к трем положениям  [c.264]

Принцип Сен-Венана кроме задач кручения и изгиба используется также при построении теории для плоского напряженного состояния (см. 4), когда для пластинки распределение нагружения по боковой поверхности не учитывается, а сводится к результирующим характеристикам. Другой подход имеет место в задачах изгиба пластинок (и, более того, в теории оболочек). Здесь игнорирование распределения напряжений является следствием гипотез, положенных в основу той или иной теории (как, например, для гипотезы прямых нормалей). В этом случае краевые условия в напряжениях сводятся к изгибающим моментам, крутящему моменту и перерезывающим силам.  [c.265]

Остановимся на принципе Сен-Венана для динамических задач теории упругости [202], где рассмотрена одна частная задача специального вида. Изучалась кусочно-однородная среда (совокупность полос из одного материала, разделенных полосами из другого материала с существенно меньшими значениями упругих постоянных). К торцам первой группы полуполос была приложена статически эквивалентная нулю динамическая нагрузка. Из анализа точного решения задачи было установлено, что напряжения отличны от нуля не только в области, непосредственно примыкающей к участку нагружения, но также и в определенной (малой по протяженности) зоне, примыкающей к волновому фронту.  [c.265]


Сен-Венан, основываясь на опытах ф])анцузского инженера Треска по истечению металлов через отверстия, высказал предположение, что в пластическом состоянии максимальное касательное напряжение имеет одно и то же постоянное значение, являющееся константой для данного материала. Сен-Венан дал математическую формулировку критерию для случая плоской деформации, которую Леви обобщил на пространственную задачу теории пластичности, и потому этот критерий известен под названием критерия Сен-Венана — Леви.  [c.294]

При решении задач теории упругости часто обращаются к принципу Сен-Венана. Если при решении задачи граничные условия задаются точно согласно истинному распределению сил, то решение может оказаться весьма сложным. В силу принципа Сен-Венана можно, смягчив граничные условия, добиться такого решения, чтобы оно дало для большей части тела поле тензора напряжений, очень близкое к истинному. Определение тензора напряжений в месте приложения нагрузок составляет особые задачи теории упругости, называемые контактными задачами или задачами по исследованию местных напряжений. На рис. 12 показаны две статически эквивалентные системы сил одна в виде сосредоточенной силы Р, перпендикулярной к плоской границе полубесконечной пластинки, а другая — в виде равномерно распределенных на полуцилиндриче- Кой поверхности сил, равнодействующая которых равна силе Р и перпендикулярна к границе пластинки. В достаточно удаленных  [c.88]

Большое количество задач теории упругости решается с использованием принципа локальности эффекта самоуравновешенных внешних нагрузок—принципа Сен-Венана. Согласно этому принципу, если в какой-либо малой части тела приложена уравновешенная система сил, то она. вызывает в теле напряжения, очень быстро убывающие по мере удаления от этой части (экспоненциальный характер затухания напряжений).  [c.6]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Эта задача была решена Сен-Венаном (1878) и А. Гринхиллом (1879). В 1912 р. А. Н. Динник решил эту задачу при помощи функций Беоселя. В дальнейшем она была изучена иными методами рядом других авторов. Рассмотрим решение Сен-Венана.  [c.164]

Эта задача была впервые (1900) решена Дж. Мичеллом полуобрат-Hbiw методом Сен-Венана. Предполагается, что, как и при кручении круглого бруса постоянного диаметра, перемещения произвольной точки К бруса в радиальном направлении ы, и в осевом направлении равны нулю. Перемещение же по касательной к окружности радиуса г в плоскости поперечного сечения есть некоторая искомая функция  [c.191]

Задачу будем решать в напряжениях подуобратньш методом Сен-Венана, т. е. сделав определенные предположения относительно значений некоторых компонент тензора напряжений. Допустим, что  [c.203]

Было предпринято много попыток дать объяснение, согласовать теорию с опытом путем изменения постановки задачи и введения дополнительных гипотез. Для проверки теории соударения Сен-Венана Б. М. Малышевым [3, 30] было проведено обстоятельное экспериментальное исследование, которое показало, что значительные отклонения экспериментальных данных от предсказаний теории Сен-Венана обусловлены тем, что опыты по соударению проводились на недостаточно длинных и тонких стержнях и при очень малых скоростях,когда волновые эффекты малы по сравнению с влиянием других факторов, связанных с несовершенством постановки опыта, причем измерения продолжительности удара выполнялись недостаточно точными методами и аппаратурой, предназначенной для измерения малых промежу-ков времени. Для таких измерений Б. М. Малышевым предложен новый метод измерения продолжительности удара с помощью счетноимпульсного хронометра полученные результаты находятся в согласии с теорией Сен-Венана.  [c.224]


Смотреть страницы где упоминается термин Сен-Венана задача : [c.295]    [c.862]    [c.130]    [c.26]    [c.119]    [c.240]    [c.72]    [c.82]    [c.82]    [c.85]    [c.132]    [c.265]   
Введение в акустическую динамику машин (1979) -- [ c.155 ]

Теория упругости (1975) -- [ c.400 ]



ПОИСК



Дифракция на ребре. Пространен венная задача

Задача Сен-Венана Полуобратный метод Сен-Венана

Задача Сен-Венана для однородного призматического тела (цилиндра)

Задачи Сен-Венана и Альманзи

Замечание о фактическом решении основных задач. Принцип Сен-Венана

Исследование эффекта Сен-Венана в задаче о симметричных колебаниях пластины

Классификация задач Сен-Венана

Кручение стержней с некруглым поперечным сечением. Задача Сен-Венана

Нормальное напряжение аг в задаче Сен-Венана

Обратная задача теории упругости. Принцип Сен-Венана

Перемещения в задаче Сен-Вена. 2.3. Упругая линия

Полуобратпый метод Сеи-Венана. Задача Сен-Венана Принцип Сен-Вепапа

Постановка задач теории упругости. Уравнение Клапейрона Теорема единственности решения задач теории упругости Принцип Сен-Венана

Постановка задачи Сен-Венана

Принцип Сен-Венана для неоднородных задач

Прямые и обратные решения задач теории упругости. Полуобратный метод Сен-Венана

РАСТЯЖЕНИЕ, КРУЧЕНИЕ И ИЗГИБ ОДНОРОДНЫХ И СОСТАВНЫХ БРУСЬЕВ КРУЧЕНИЕ И ИЗГИБ ОДНОРОДНЫХ БРУСЬЕВ (ЗАДАЧА СЕН-ВЕНАНА) Постановка вопроса

Сен-.Вена

Сен-Венан

Сен-Венана задача 418, 660,— принцип,

Функции напряжений в задаче Сен-Венан



© 2025 Mash-xxl.info Реклама на сайте