Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение деформаций и механических напряжений

Измерение деформаций и механических напряжений  [c.600]

Следует отметить, что при статическом методе определения модуля Юнга ферромагнитных металлов приходится иметь дело с относительно большими деформациями и механическими напряжениями, что приводит к искажению результатов измерений. Измерение же модуля Юнга в динамическом режиме свободно от указанных недостатков, так как в этом случае мы имеем дело с пренебрежимо малыми деформациями и напряжениями.  [c.454]


Экспериментальный анализ прочностных свойств элементов конструкций целиком основан на определении величины и характера распределения механических напряжений в деталях, воспринимающих нагрузки. Непосредственное измерение местных (а не средних) напряжений в реальных сложных конструкциях осуществить невозможно, потому что, по определению, напряжение представляет собой производную величину, вычисляемую через отношение действующей силы к единице площади сечения, перпендикулярного действию силы. Поэтому значения напряжений определяются обычно путем измерения деформаций и последующего вычисления искомых напряжений на основании известного соотношения между этими величинами.  [c.253]

Существуют различные физические методы измерения остаточных напряжений — рентгеновский, магнитный, ультразвуковой, однако наиболее распространенными являются механические методы, основанные на измерении деформаций и перемещений при разрезке Металла и освобождении его от напряжений [1]. В простейшем случае остаточные напряжения предполагаются одноосными. В этом случае размер базы измерения выбирается большой —до 100 мм (рис. 4.13,6). После начальных замеров с двух сторон пластины ее разрезают на полоски, ширина кото-  [c.91]

Остаточные напряжения определяют как физическими (рентгеновским [246], ультразвуковым [48]), так и механическими методами, основанными на разрезке металла и освобождении его от напряжений или на измерении деформаций (перемещений) до и после сварки конструкции [214].  [c.269]

Среди механических факторов, которые могут привести к образованию дефекта в покрытии, следует в первую очередь назвать нагружение на сжатие и на удар. Другими характерными нагрузками и показателями механической прочности являются силы, вызывающие срез и циклический изгиб, сопоставляемые с прочностью сцепления или с прочностью на отрыв покрытия, а также деформации, сопоставляемые с величиной деформации покрытия при разрыве. Сжимающие силы могут возникнуть, например, при воздействии камней на покрытие подземного трубопровода. Напротив, ударные нагрузки могут быть более разнообразными по видам и величине такие нагрузки возможны на всех стадиях транспортировки и укладки труб и фитингов с покрытиями. Практические нагрузки при транспортировке и укладке не могут быть определены по механическим напряжениям с такой точностью, чтобы лабораторные испытания могли бы дать результаты измерений, пригодные для непосредственного использования. Поэтому для оценки наряду с лабораторными испытаниями, проводимыми при определенных условиях, нужны и полевые, проводимые в условиях, близких к практическим, с имитированием практических нагрузок нужен также и практический опыт. Для покрытий труб были проведены все три стадии испытаний их результаты обсуждаются далее с целью оценки эффективности различных систем покрытия и с целью определения необходимой толщины слоя для конкретной системы покрытия [3].  [c.151]


Таким образом, машина УМ-9 позволяет изучать процесс распространения усталостных трещин несколькими способами микроскопическим, путем измерения электрического сопротивления и по изменению несущей способности образца (осуществляется измерением механических напряжений, действующих в образце при его циклическом нагружении с постоянной амплитудой деформации). Измерение в этом случае может осуществляться как периодически с помощью упругого динамометра и отсчетного микроскопа, так и непрерывно путем тензометрирования. При разработке блока стробоскопического освещения микроскопа МВТ и блока измерения электросопротивления образца были использованы с небольшими изменениями соответствующие схемы, примененные в установке ИМАШ-10-68 [3].  [c.42]

Для регистрации деформаций образцов и изделий при нагружении их внутренним давлением применимы практически все современные методы и средства тензометрии метод делительных сеток и струнные тензометры— для определения больших деформаций тензорезисторы и механические тензометры, оптические активные покрытия — для измерения относительно малых деформаций. Для оценки напряженного состояния в зонах концентрации напряжений используют тензометрические и оптические методы.  [c.72]

Определение механических напряжений в микрообъемах металла с помощью электрохимических исследований по методике, изложенной в гл. II, позволило нам [104] установить смещение электродного потенциала а отрицательную сторону при деформации армко-железа и стали 20. Закономерность эта справедлива только для зоны упругой деформации металла. После достижения предела текучести металла линейность изменения потенциала нарушается. Чувствительность электродного потенциала к изменению состояния поверхности металла, в том числе вызванного появлением первых признаков его пластической деформации в микрообъемах, очень высокая. Стандартные механические испытания на растяжение образцов часто не позволяют точно зафиксировать начало пластической деформации, как это можно сделать с помощью измерения электродного потенциала.  [c.52]

Тензорезисторы для измерения деформаций в экстремальных условиях. В Институте машиноведения разработаны четыре типа тензорезисторов и предназначены для определения напряженно-деформированного состояния элементов конструкций, работающих в условиях воздействия высоких и сверхнизких температур, сильных магнитных полей, ионизирующих излучений. Области применения — энергетика, металлургия, транспорт и др. Возможное использование в качестве первичных преобразователей — в различных датчиках механических величин. Расширение диапазона рабочих условий достигнуто применением новых материалов и технологических процессов.  [c.123]

Рентгеновский метод целесообразно применять для оценки величины и знака напряжений в деталях малых размеров и сложной формы, для которых механические методы применять трудно, а также для исследования тонких слоев. Этот метод основан на измерении межатомных расстояний в напряженном и ненапряженном металле. Деформацию кристаллической решетки измеряют по дифракционным линиям, которые характеризуются смещением их относительно аналогичных линий у ненапряженного материала, а также шириной и интенсивностью.  [c.112]

Измеряемые механические величины. По отношению к рассматриваемой механической системе измеряемые механические величины можно подразделить на первичные и вторичные. Первичными измеряемыми величинами являются те, которые, как правило, выбирают в качестве обобщенных сил, обобщенных координат и их производных по времени при описании поведения механических систем (сила, момент сил, координаты, перемещения, скорости, ускорения точек и тел, напряжения и деформации тел, давления). Для измерения первичной механической величины, как правило, используют датчик — измерительный преобразователь, переводящий измеряемую физическую величину в величину другого физического характера.  [c.12]


Методы определения внутренних напряжений. При механическом методе определения внутренних напряжений первого рода детали разрезают и по деформации после разрезки определяют внутренние напряжения. Механический метод требует уничтожения или порчи исследуемой детали и пригоден лишь для деталей простой формы— прутков, труб с осевой симметрией в распределении напряжений и призматических тел, находящихся в линейном напряженном состоянии. Измерения деформации можно производить различными методами — оптиметром, универсальным измерительным микроскопом, проволочными датчиками, акустическим методом и т. д.  [c.78]

Для измерения упругих деформаций и напряжений применяют приборы, называемые тензометрами. Их подразделяют на механические, пневматические, оптические, электрические, комбинированные.  [c.206]

Четвертым важнейшим типом механических испытаний являются динамические механические измерения, в которых определяется реакция материала на синусоидальные или другие формы циклических нагрузок. Так как напряжение и деформация в полимерах не совпадают по фазе, динамические механические испытания дают две характеристики материала — модуль упругости и угол сдвига по фазе между напряжением и деформацией, характеризующий механические потери (затухание колебаний).  [c.19]

Механические свойства материалов изучаются с помощью специально изготовленных образцов, которые закрепляются в испытательной машине. В ходе испытания ведется измерение и запись напряжений и деформаций, возникающих в образце при увеличении нагрузки. Полученный график зависимости напряжений от деформаций называют обычно кривой деформирования. Вопрос о том, хорошо или, плохо отражает эта кривая свойства самого материала и не зависит ли ее вид от размеров и формы образца и свойств машины, очень важен. Только положительный ответ на него свидетельствует о достоверности проведенных испытаний.  [c.47]

Эксперименты, описанные Бриджменом в этой монографии, были выполнены в тот же промежуток времени, что и эксперименты Дэвиса. Несмотря на то, что программа Бриджмена исследования больших деформаций поликристаллических тел при воздействии нагрузки, вызывающей более чем один ненулевой компонент напряжений, была значительно более широкой по размаху, числу и разнообразию измерений, которые он проделал, полученные им результаты оказались значительно менее существенными, чем результаты Дэвиса, полученные в те же годы. Оглядываясь вглубь времени примерно на три десятилетия, с сожалением убеждаемся, что Бриджмен сосредоточил свое внимание на исследовании химически сложных поликристаллических тел с особой предварительной термической и механической обработкой.  [c.116]

С увеличением размеров и скоростей в современном машиностроении все большее значение приобретает вопрос о расчетах прочности машинных частей. С одной стороны, в связи с увеличением размеров и скоростей увеличиваются и допускаемые напряжения, с другой стороны, к машинам значительных размеров предъявляются более высокие требования прочности, нежели к малым i). Необходимая прочность машин может быть обеспечена только на основе точного исследования распределения напряжений в их частях и изучения механических свойств применяемых материалов. При разрешении вопросов прочности в машиностроении необходимо пользоваться и тем и другим путем. Полное теоретическое решение, которое может быть непосредственно применено к анализу распределения напряжений, можно получить только для простейших случаев, как, например, при деформациях тонких призматических стержней и тонких пластинок. В большинстве критических случаев картина очень сложна, и решение задачи, основанное на упрощающих допущениях, может быть принято для определения напряжений только как первое приближение. Для расширения наших знаний в вопросах о распределении напряжений следует, с одной стороны, развивать методы, которые позволяли бы разрешать задачи теории упругости в сложных случаях, встречающихся на практике, с другой стороны, производить испытания моделей, а также производить измерения напряжений на самих машинах, внимательно изучая при этом всякие неправильности в их работе ).  [c.556]

Механическая энергия обусловлена нагревом конца стержня и энергией деформации в волне напряжений. Измерения температуры не проводились из-за трудностей динамических измерений такого рода. Энергию деформации в волне вычисляли интегрированием величины t E по длине волны  [c.114]

Испытания на усталость. Различные структуры и механические свойства сварных швов, зоны термического влияния иод воздействием переменных нагрузок могут привести к образованию микротрещин, а затем и к разрушению сварного соединения. Такое разрушение носит название усталостного, а состояние металла при этом называется усталостью. Для имитации процессов, происходящих в реальной конструкции, подверженной усталостному разрушению, образец сварного соединения подвергают действию переменных нагрузок — растяжению, сжатию, изгибу, кручению или комбинации этих нагрузок. Испытания проводят в той среде и при той температуре, которые соответствуют производственным условиям. Повторно-переменное приложение нагрузок к испытуемому образцу носит циклический характер. Предел выносливости характеризуется наибольшим напряжением, которое может вынести образец без разрушения при заданном числе циклов. Для сварных соединений это число составляет (2...10)10 . Машины для испытания на усталость имеют следующие основные механизмы приложения, измерения, регистрации заданных нагрузок и деформаций, подсчета циклов и автоматического отключения ири разрушении образца. Порядок проведения испытаний на усталость, формы и размеры образцов регламентируются ГОСТ 2860—65.  [c.158]


Проведенное рентгенографическое исследование позволило оценить степень фрикционного упрочнения при заданных условиях трения. Полученные результаты показали хорошую согласованность с результатами измерения микротвердости. Таким образом, использование результатов рентгенографического анализа и установленных соотношений механических свойств и параметров структуры деформированного металла позволило получить сведения о пластических деформациях и действующих на контакте напряжениях течения при сухом трении, согласующихся как с общей молекулярно-механической теорией трения, так и с рассмотренной в работе [15] моделью заедания.  [c.25]

При измерении деформаций и связанных с ними механических напряжений во вращающихся деталях используют тензодатчики (тензорезисторы), которые наклеивают на исследуемью поверхности, в результате чего они деформируются вместе с деталями. Тензодатчиками можно измерять деформации, обусловленные растяжением, изгибом и кручением. Эти деформации могут служить-основой для определения напряжений в материале деформируемых деталей, а деформация, которая обусловлена кручением вала, передающего крутящий момент, может использоваться для определения крутящего момента.  [c.310]

Предварительные замечания. Исследование вопросов прочности деталей машин и конструкций при вибрации связано с необходимостью измерения переменных механических напряжений и деформаций в различных точках этих деталей. В данном разделе приведены основные понятия и зависимости, необходимые для задач измерения деформаций и напряжений. Более подробно вопросы напряженного и деформированного состояний тел рассматриваются в руководствах по теории упру, гости [1, 10, 18] (см. также том I, гл. VIII, раздел 2).  [c.34]

Выбор метода и средств измерения деформаций при механических испытаниях в условиях сложного напряженного состояния определяется целями проводимого эксперимента и зависит от вида испытываемога образца и способа его нагружения.  [c.247]

Основным методом изучения и измерения внутренних напряжений является рентгенографический. Для определения напряжений иервого рода применяют и механический метод (удаление поверхностных слоев металла и измерение деформаций, вызванных перераспределением напряжений).  [c.218]

Наибольшее распространение получили механические методы, которые в основном различаются характером расположения измеряемых баз и последовательностью выполнения операций разрезки и измерения деформаций металла. Напряжения в пластинах в простейшем случае определяют, считая их однородными по толщине, что справедливо только в случае однопроходной сварки. Так как разгрузка металла от напряжений происходит упруго, то по измеренным деформациям вырезанной элементарной пластинки на основании закона Гука можно вычислить ОН [214]. В случае ОСН при многопроходной сварке, применяемой при изготовлении толстолистовых конструкций, распределение напряжений по толщине соединения крайне неоднородно [86—88], поэтому достоверную картину распределения напряжений можно получить либо только по поверхности соединения [201], либо по определенному сечению посредством поэтапной полной разрезки образца по этому сечению с восстановлением поля напряжений с помощью численного решения краевой задачи упругости [104]. Последний экспериментальночисленный метод [104] будет рассмотрен подробно далее.  [c.270]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Упругие постоянные низшего порядка однозначно связаны со скоростями продольных l и поперечных t волн и не зависят от механических напряжений. Измеряя скорость УЗ-волн любым методом, можно определить упругие постоянные Е, G, К, v и, следовательно, оценить поведение материала в условиях напряженного состояния [591. Точное измерение скорости дает возможность определять также упругие постоянные высшего порядка, зависимости деформаций от напряжений, В табл. 9.1 приведены формулы, связывающие любую пару упругих констант между собой, позволяющие определять весь набор пьезоконстант по измеренным значениям скоростей С и С(. Для точного измерения С и f требуется применение сложных методик и установок. Измерения усложняются тем, что погрешности вычисления упругих постоянных примерно вдвое больше погрешностей измерения l и С(. Однако для определения напряженного состояния материала достаточно измерить лишь относительное изменение скорости волны разных типов. В зависимости от решаемой задачи и геометрических размеров контролируемого объекта в некоторых случаях можно пользоваться достаточно простыми методами измерений, обеспечивающими необходимую точность определения Ас/с.  [c.411]

Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной, субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации позволяет в некоторой мере оценивать механохими-ческую коррозию по физико-механическим свойствам стали.  [c.86]


Экспериментальное определение деформаций, напряжений и усилий включает постановку задачи, выбор метода исследования и аппаратуры (принцип измерения, тип и характеристики аппаратуры), проведение измерений и анализ получаемых данных. Экспериментальное определение производится на механических моделях (физическое моделирование), деталях машин и конструкциях в лабораторных, стандовых и эксплуатационных условиях. Современные экспериментальные методы позволяют находить действительные, в том числе наибольшие, вели-  [c.542]

ТЕМПЕРАТУРА критическая соответствует критическому состоянию вещества переходу сверхпроводника из сверхпроводящего состояния в нормальное) Кюри является [общим названием температуры фазового перехода второго рода температурой фазового перехода ферромагнетика в парамагнетик при которой исчезает самопроизвольная поляризация в сегнетоэлектриках) ] насыщения соответствует термодинамическому равновесию между жидкостью и ее паром при данном давлении Нееля фиксирует фазовый переход антиферромагнетика в парамагнетик плавления выявляет фазовый переход из кристаллического состояния в жидкое радиационная — температура абсолютно черного тела, при которой его суммарная по всему спектру энергетическая яркость равна суммарной энергетической яркости данного излучающего тела термодинамическая определяется как отношение изменения энергии тела к соответствующему изменению его энтропии цветовая определяется температурой абсолютно черного тела, при которой относительные распределения спектральной плотности яркости этого тела и рассматриваемого тела максимально близки в видимой области спектра яркостная — температура абсолютно черного тела, нри которой спектральная плотность энергетической яркости совпадает с таковой для данного излучающего тела, испускающего сплошной спектр] ТЕНЗИ-ОМЕТРИЯ — совокупность методов измерения поверхност э-го натяжения ТЕНЗОМЕТРИЯ—совокупность методов измерения механических напряжений в твердых телах по упругим деформациям тел ТЕОРЕМА Вариньона если данная система сил имеет равнодействующую, то момент этой равнодействующей относительно любой оси или точки равен алгебраической сумме моментов слагаемых сил относительно той же оси или точки Вириала устанавливает соотношение, связывающее среднюю кинетическую энергию системы частиц с действующими в ней силами)  [c.281]

Измерение деформаций на поверхности исследуемых конструкций может осуществляться тензометрами различного типа механическими, электрическими, оптическими, магнитными, пневматическими и др. Наиболее распространены в практике экспериментальных исследований напряженно-деформированного состояния электрические тензометры — тен-зорезисторы.  [c.527]

Прямые измерения напряжений и деформаций в упругопластической стадии деформирования по специально разработанной методике [33] показывают (см. рис. 1.4, б), что при эксплз атации имеет место существенная концентрация температурных и изгибных механических напряжений, возникающих при нестационарных режимах работы котла в связи с общей и местной геометрической неоднородностью конструкции.  [c.13]

Датчики перемещений. При измерении перемещений во многих случаях Moiyr быть определены другие параметры - деформации, силы, давление, параметры вибраций, механические напряжения и др. Датчики перемещений классифицируют по следующим основным признакам принципу действия чувствительного элемента структуре построения виду выходного сигнала [1, 22, 27, 69].  [c.274]

Б соответствии с существующими зависимостями (см. табл. 1.2) по описанию скоростей распространения трещин при экспериментальных исследованиях их кинетики при циклическом нагружении по мере увеличения числа циклов N должны измеряться длина трещины I, размах номинального напряжения А(Т (для определения AKi), размах номинальной упругопластической деформации Де , размах перемещений берегов трещины Д0 (раскрытие трещины), размер пластической зоны г,. Для измерений используются различные динамометрические устройства (механические, гидравлические, упругие с датчиками сопротивления). Для измерения Де применяются механические, электромеханические, оптические, фотоэлектронные, индуктивные и другие типы де-формометров, рассмотренных в работах [34, 35, 111]. Перемещения, как указано в [34], также измеряются механическими, оптическими, электромеханическими, индуктивными, емкостными устройствами, как правило, с малыми базами (от 0,5 до 2—3 мм). Размер пластической зоны г, может быть определен с помощью интерферометров, фотоустройств с наклонным освещением, металлографических микроскопов. Для измерения длин трещин I наибольшее применение получили [35, 111] следующие методы оптические, электросопротивления, электропотенциалов, ультразвуковые, токовихревые, датчиков последовательного разрыва,. 4ц1носъемки и др.  [c.219]

Исследования, связанные с учетом неоднородности, разработаны хуже, поскольку механизмы разрушения основаны на представлениях механики сплошной среды. Особую сложность в этом смысле представляют композиционные материалы с пластичной матрицей. Например, система 50 об.% волокна борсик + алюминий 6061 переходит от стадии I (волокно упругое, матрица упругая) до стадии II (волокно упругое, матрица пластичная) при относительной деформации —0,15 0,05% (в зависимости от термической и механической предыстории материала). Таким образом, половина объема материала подвергается напряжениям порядка 35 кгс/мм . Если эта система будет иметь надрез, то, очевидно, вблизи вершины надреза начнется интенсивная пластическая деформация матрицы. Действительно, если испытывать при растяжении материал с укладкой волокон под углами 45°, измеренная деформация превышает 10%, поскольку волокно не оказывает серьезного противодействия в направлениях 0° или 90°. В этих условиях не ясно, будет ли выражена особенность напряженного состояния в форме С Ь. В некоторых работах по пластичности Вейса и Йакава [95] и Либовица [58] появились выражения для включающие log С.  [c.477]

Нами была создана рентгеновская установка на базе аппарата УРС-55, с выносной рентгеновской трубкой в защитном кожухе, позволяющая производить исследования на поверхности крупногабаритных изделий. Обычно исследования методом рентгено- структурного анализа, в том числе и рентгеновские измерения напряжений, выполняются на образцах в специальных рентгеновских камерах. Создание такой установки дало возможность исследовать остаточные напряжения на наружной и внутренней поверхностях сварных швов промышленных сосудов высокого давления без вырезок образцов. Исследовалось взаимодействие остаточных напряжений с механическими напряжениями при нагружении сосуда внутренним давлением, при первом нагружении, циклике. Исследовался металл сварного шва после разрушения сосуда внутренним давлением. Параллельно измерялись деформации зерен металла различных зон сварных соединений методом микроструктурных измерений, который успешно освоили молодые специалисты Теплова Галина Викторовна и Гончарова Виктория Вольфовна.  [c.177]

Кристаллы в виде проволоки диаметром 0,15 жж нагревались в вакуумной колбе пропусканием через них тока, причем стенки колбы поддерживались при температуре — 196° С и закаливались отключением тока и одновременным наполнением камеры гелием. На проволочных образцах проводились механические испытания и измерения удельного электросопротивления. В процессе приготовления образцов для механических испытаний не исключена возможность образования тетраэдрических дефектов упаковки или дислокационных петель, хотя методика закалки кристаллов для элект-роннО Микроскопических исследований была другой. Галиган и Вашбурн считали, что дефекты структуры одинаковы как в том, так и в другом случае и сравнивали образование темных пятен, т. е. увеличение интенсивности малоуглового рассеяния, увеличение предела текучести, изменение кривой напряжения — деформация и уменьшение закалочного электросопротивления.  [c.209]


Смотреть страницы где упоминается термин Измерение деформаций и механических напряжений : [c.419]    [c.253]    [c.139]    [c.213]    [c.199]    [c.234]    [c.129]    [c.80]    [c.240]    [c.555]    [c.365]    [c.188]    [c.248]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.600 ]



ПОИСК



597 — Деформации и напряжения

Деформации — Измерение

Деформация и механическое напряжение

Напряжение механическое

Напряжения Измерение

Напряжения механические — Измерение



© 2025 Mash-xxl.info Реклама на сайте