Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания материалов при сложном напряженном состоянии

В модификации СОУС-М, предназначенной для испытаний материалов при сложно-напряженном состоянии, увеличено количество типов ступеней по способам задания пределов командного сигнала. Кроме ступеней с предварительно задаваемыми постоянными и переменными пределами, введены ступени с задаваемым размахом командного сигнала (максимум или минимум которого определяется в процессе испытаний как конечный уровень сигнала предыдущей ступени по выбранному каналу обратной связи), а также ступени, окончание которых определяется при достижении сигналом по выбранному каналу АЦП предварительно заданной величины. В характеристики ступеней СОУС-М добавлен номер канала АЦП, по которому осуществляется обратная связь на этой ступени.  [c.512]


МЕТОДЫ МЕХАНИЧЕСКИХ ИСПЫТАНИЙ МАТЕРИАЛОВ ПРИ СЛОЖНОМ НАПРЯЖЕННОМ СОСТОЯНИИ  [c.209]

Возможности и ограничения указанных методов достаточно полно освещены в литературе [115, 200, 466]. Их применение в испытаниях материалов при сложном напряженном состоянии не требует каких-либо дополнительных усовершенствований или доработок. Поэтому здесь ограничимся рассмотрением некоторых наиболее удачных конструкций экстензометров, используемых для измерения деформаций трубчатых и сферических образцов.  [c.248]

Для низкотемпературных испытаний материалов при сложном напряженном состоянии используют диски, опертые по контуру [432], крестообразные [158, 556] и трубчатые [149] образцы. В последнем случае, как и при испытании натурных сосудов, основная сложность, особенно при весьма низких температурах, заключается в отсутствии приемлемой рабочей среды для создания высоких давлений. Применение газовых и парожидкостных сред связан( с решением сложных вопросов защиты. В качестве жидкой рабочей среды при температурах до —190° С могут быть использованы легкие фракции нефти, при более низких температурах — ожиженные газы. Специфические свойства этих сред требуют применения специальных средств предосторожности и сложных насосных комплексов. Задача усложняется еще и тем, что верхний предел достижимых давлений ограничен точкой затвердевания рабочего тела. Так, если азот при температуре —190° С затвердевает при давлении около 1000 кГ]см , то снижение температуры на 20° С приводит к уменьшению критического давления приблизительно в 60 раз.  [c.266]

Разнообразие геометрических форм образцов для испьггания материалов при сложном напряженном состоянии не позволяет провести их четкую систематизацию по единому признаку. Принято следующее деление видов статических испытаний материалов в  [c.308]

Механические испытания материалов при сложном напряжен ном состоянии весьма трудоемки и требуют соответствующего технического обеспечения. Поэтому в лабораторной практике часто используются экспресс-методы, позволяющие производить сравнительную оценку свойств материала и выбирать оптимальные варианты по составу, структуре, режиму термомеханической обработки и т. п.  [c.241]

Ввиду трудоемкости высокотемпературных испытаний высокопрочных конструкционных материалов при сложном напряженном состоянии иногда используют модельные материалы. Так, широкое распространение получили опыты на материалах, обладающих свойством ползучести при комнатной температуре, например на свинце и даже на макаронном тесте [2911. Это значительно упрощает эксперимент и дает богатый материал для изучения ползучести с позиций механики сплошной среды.  [c.258]


Таким образом, последние годы отмечены значительным прогрессом в развитии теории прочности материалов при сложном напряженном состоянии. Критерии (6.8) и (6.10) получили экспериментальную проверку на сильно анизотропных материалах типа стеклопластиков [34, 39, 86, 132, 1561, изотропных жестких полимерах [97, 156]. Критерий (6.14) проверен в опытах на металлах и сплавах, а также на некоторых жестких пенопластах [130, 131, 1341. Наряду с этим имеются работы, посвященные проверке пригодности традиционных критериев прочности к описанию предельных свойств полимеров при кратковременном нагружении. В опытах А. М. Жукова [681 установлено, что в первом квадранте плоскости главных напряжений разрушение оргстекла удовлетворительно описывается теорией наибольших нормальных напряжений. Данные по пределам текучести этого материала, опубликованные в [194, 254), в том же квадранте хорошо согласуются с критерием Мизеса, а при двухосном растяжении—сжатии — с видоизмененным критерием Мизеса, учитывающим различия в сопротивлении оргстекла (ПММА) растяжению и сжатию [1941. В [208, 2091 представлены результаты испытаний образцов из  [c.209]

Для сложного напряженного состояния подобный метод оценки прочности непригоден. Дело в том, что для одного и того же материала, как показывают опыты, опасное состояние может наступить при различных предельных значениях главных напряжений Ох, Оз и 03 в зависимости от соотношений между ними. Поэтому экспериментально установить предельные величины главных напряжений очень сложно не только из-за трудности постановки опытов, но и вследствие большого объема испытаний. В случае сложного напряженного состояния конструкции рассчитывают на прочность, как правило, на основании теоретических разработок с использованием данных о механических свойствах материалов, получаемых при испытании на растяжение и сжатие (иногда используют также результаты опытов на кручение). Только в отдельных случаях для оценки прочности конструкции или ее элементов прибегают к моде-  [c.195]

Последовательность смены механических состояний типична для пластичных материалов и хорошо прослеживается при одноосном нагружении, например, при растяжении или сжатии образцов. При этом можно установить предел текучести от этого материала, а подвергая такому же испытанию образец из хрупкого материала, устанавливается предел прочности ов. Предел текучести для пластичного материала от и предел прочности ов для хрупкого материала являются предельными напряжениями этих материалов, т. е. опасными. Иное положение наблюдается при сложном напряженном состоянии. В этом случае предельное состояние зависит от соотношения величин главных напряжений 0 , 02 и 03. Большая сложность постановки опытов и чрезвычайно большое многообразие соотношений величин 0 , сгз и 03 не позволяют достаточно полно исследовать сложное напряженное состояние опытным путем.  [c.91]

Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

Окончательная оценка прочности и надежности материала производите по результатам натурных испытаний полноразмерных изделий, но эти испытания дороги, сложны и проводятся с малым числом опытов. Испытание модельных емкостей внутренним давлением дает наибольшее приближение к реальным условиям работы емкости из всех существующих лабораторных методов оценки материалов при двухосном напряженном состоянии (испытание широких образцов на изгиб, образцов с выточкой на растяжение, плоских и сферических сегментов внутренним давлением).  [c.222]


Для оценки сопротивления материалов длительному разрушению при сложном напряженном состоянии по результатам испытаний при простейших нагружениях рекомендуется ряд критериев. По одним данным, критерием длительной прочности может служить интенсивность нормальных напряжений [192, 402], по другим — максимальное нормальное напряжение [120] или критерий в виде полусуммы интенсивности напряжений и максимального нормального напряжения [407] ц = - В работе  [c.172]

Метод испытания материалов на усталость при сложном напряженном состоянии выбирается, как правило, по соображениям удобства создания переменного силового фактора. Наиболее широкое распространение получили испытания сплошных и полых образцов на изгиб с кручением, испытания трубчатых образцов с изменяющимися во времени параметрами внешних воздействий, испытания образцов в виде кубиков с применением различных реверсоров и приставок и др.  [c.244]

Поскольку промышленность не выпускает оборудования, предназначенного для испытаний полимерных материалов на ползучесть и длительную прочность при сложном напряженном состоянии, для выполнения исследований была сконструирована и изготовлена экспериментальная установка. Принципиальная схема установки приведена на рис. 4.11. Стенд состоит из двенадцати испытательных ячеек, каждая из которых имеет автономную систему нагружения опытного образца 1. Образцы с герметизирующими захватами размещаются внутри термокамеры 13 и обогреваются воздушным потоком, создаваемым вентилятором (на рисунке не показан). Постоянство температуры воздуха в термокамере поддерживается автоматическим регулятором в интервале 20—120 С с точностью 2° С. Стенд позволяет нагрузить опытный образец внутренним гидростатическим давлением (до 50 кгс/см ) и осевым растяжением (до 600 кгс).  [c.135]

Ударной вязкостью тг называется работа разрушения, отнесенная к площади сечения образца в месте надреза. Этой величине трудно приписать какое-то определенное физическое значение, это есть некоторая условная характеристика, которая, как оказывается, чрезвычайно чувствительна к способности материала к хрупкому разрушению. Пониженная величина ударной вязкости иногда обнаруживается у материалов, для которых обычные механические характеристики — временное сопротивление и удлинение при разрыве — не выходят за пределы нормы. Однако при сложном напряженном состоянии изделия из таких материалов иногда дают хрупкое разрушение. Поэтому испытание на ударную вязкость является обязательным, например, для поковок роторов турбин и турбогенераторов.  [c.412]

Разрушение в условиях отсутствия стадии ускоренной ползучести также является довольно распространенной. Такое поведение наблюдается у материалов, сравнительно малопластичных при температуре испытания, цилиндрические образцы из которых разрушаются во время стадии // при сложном напряженном состоянии, характеризуемом высокой жесткостью у при нагружении сжатием при растяжении тонколистовых и трубчатых  [c.91]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]

Так как слоистые композиты являются в общем анизотропными материалами, то данных, полученных при одноосных испытаниях, недостаточно для анализа их поведения при объемном напряженном состоянии. Поэтому изучение задач смешанного вида разрушения в композитах является более сложным, чем в изотропных материалах.  [c.137]

Существование такой общности подтверждается общими аналитическими зависимостями, которые описывают разрушение металлов и сплавов при фрикционной и объемной усталости. Уравнение Коффина, характеризующее разрушение металлов и сплавов в условиях объемной малоцикловой усталости, было получено для трения путем количественной оценки периодичности структурных изменений поверхностных слоев при испытании стали 45 на модели фрикционного контакта [121]. Эти же исследования позволили выявить особенности процесса трения, связанные с градиентом деформаций и напряжений по глубине. В целом они показывают, что, несмотря на своеобразие поведения поверхностных слоев материалов при пластическом деформировании и специфику нагружения при трении, связанную с локализацией изменений и разрушения в тонком поверхностном слое, дискретностью контакта, возможными локальными вспышками температуры, сложным напряженным состоянием, большими, близкими к предельным напряжениями на контакте, между разрушением металлов и сплавов при фрикционной и объемной усталости пет принципиального, качественного различия.  [c.105]


В работе [621 сделана попытка разработки метода оценки уровня поврежденности лопатки в целом. Поскольку даже для обычных образцов, испытываемых в равномерном температурном поле и при однородном напряженном состоянии, линейное суммирование повреждений может производиться весьма условно, то суммирование повреждений столь сложного элемента, как лопатка, должно производиться с еще большей осторожностью. При циклических тепло-сменах в агрессивном газовом потоке по телу испытуемого элемента в различных его участках могут идти одновременно процессы упрочнения и разупрочнения. При длительных испытаниях в одни и те же моменты времени вблизи поверхности кромок происходит наблюдаемое визуально разрушение материала, а в сердцевине под воздействием благоприятных теплосмен материал упрочняется. Испытания на малоцикловую усталость образцов, вырезанных из лопаток, прошедших стендовую либо эксплуатационную наработку, свидетельствуют об улучшении механических свойств материалов. В то же время в других случаях можно наблюдать одновременное появление трещин в зонах экстремальных нагрузок.  [c.205]

Методика расчета характеристик прочности сложных композиционных материалов при плоском сложно-напряженном состоянии с учетом пластических свойств монослоя. — В кн. Проектирование, расчет и испытания конструкций из композиционных материалов. М. ЦАГИ, 1976, вып. IV, с. 13—19.  [c.260]

Разрушение образцов композиционных материалов при их испытании на растяжение в продольном направлении по типам I и II зависит от соотношения прочности матрицы и волокна. Ряд исследователей [3, 2, 32] показали, что в процессе растяжения композиционного материала в поперечном направлении возникает сложное напряженное состояние, а матрица и волокна подвергаются воздействию напряжений, значительно превышающих напряжения, определенные по простым механическим моделям (например, по правилу смеси). В этом случае морфология структуры поверхности разрушения определяется поведением компонентов материала. Вначале предполагали, что разрушение по матрице при поперечном растяжении (тип I) происходит из-за более высокого предела прочности борных волокон. Однако это  [c.464]

Под твердостью понимается способность материала сопротивляться внедрению в его поверхность твердого тела — индентора. В качестве индентора используют закаленный стальной шарик или алмазный наконечник в виде конуса или пирамиды. При вдавливании поверхностные слои материала испытывают значительную пластическую деформацию. После снятия нагрузки на поверхности остается отпечаток. Особенность происходяш ей пластической деформации состоит в том, что она протекает в небольшом объеме и вызвана действием значительных касательных напряжений, так как вблизи наконечника возникает сложное напряженное состояние, близкое к всестороннему сжатию. По этой причине пластическую деформацию испытывают не только пластичные, но хрупкие материалы Таким образом, твердость характеризует сопротивление материала пластической деформации. Такое же сопротивление оценивает и предел прочности, при определении которого возникает сосредоточенная деформация в области шейки. Поэтому для целого ряда материалов численные значения твердости и временного сопротивления пропорциональны. Отмеченная особенность, а также простота измерения позволяют считать испытания на твердость одним из наиболее распространенных видов механических испытаний. На практике широко применяют четыре метода измерения твердости.  [c.52]

Развитие электронной вычислительной техники, обладающей большим объемом памяти и быстродействием, позволяет осуществлять автоматизацию испытаний материалов при сложном напряженном состоянии на качественно новом уровне. Этому в большой мере способствует развитие аппаратурного обеспечения средств алектрогидроавтоматики и использование тиристорного электропривода, позволяющего программно изменять в очень широком диапазоне частоту вращения выходного вала.  [c.313]

Рис. 11.7.5. Схема автоматизированной установкв для испытания материалов при сложном напряженном состоянии Рис. 11.7.5. <a href="/info/267594">Схема автоматизированной</a> установкв для испытания материалов при <a href="/info/177300">сложном напряженном</a> состоянии
Точность любого критерия оценивается путем сопоставления результатов расчета и данных опыта. Известные экспериментальные далные о закономерностях деформирования и разрушения материалов при сложном напряженном состоянии весьма ограничены, что объясняется большими методическими трудностями при постановке опыта. Эти трудности значительно возрастают при проведении испытаний в условиях высоких и низких температур. По ш13ко- и высокотемпературной прочности материалов при сложном напряженном состоянии в литературе опубликованы лишь качественные результаты, практически полностью отсутствуют какие-либо данные о принципах конструирования соответствуюшдх испытательных средств. Этим вопросам во втором разделе уделено особое внимание. Здесь, в частности, подробно описаны методики и экспериментальные установки, разработанные и созданные в Институте проблем прочности АН УССР под руководством и ири непосредственном участии авторов, проведен анализ основных экспериментальных результатов по изучению законов упрочнения и критериев предельного состояния наиболее типичных представителей отдельных групп конструкционных материалов в различных условиях механического и теплового нагружения.  [c.8]

При испытании лабораторных стандартных образцов (растяжение-сжатие) оказывается, что 93% всех эспериментальных точек укладываются в полосу л 1 2,0. Относя этот разброс за счет свойств материалов, погреяп-юсть самого критерия для сложного напряженного состояния с вероятностью 93% характеризуется кратностью 5/2 = 2,5 Таким образом, расхождение расчета с экспериментом при сложном напряженном состоянии не более в 2,5 раза по числу циклов до разрушения является удовлетворительным.  [c.120]

На рис.. 4.9 приведены результаты испытаний на ползучесть при сложном напряженном состоянии, возникающем при совместном действии растяжения и кручения, причем эти результаты представлены в виде зависимости октаэдрического касательного напряжения to t(= j/2a /3) от скорости ползучести при октаэдрическом сдвиге — е ), в двойных логарифмических координа тах. Характер зависимостей различен при низком и при высоком уровнях напряжений. Однако для всех материалов уравнения, полученные при подстановке (а — 2т) = 1 в уравнения (4.39) или (4.44), т. е. уравнения типа  [c.104]

В процессе длительного статического нагружения в результате-действия высокой температуры и накопления деформаций ползучести в большинстве конструкционных материалов, особенно в жаропрочных никелевых сплавах, являющихся метастабильными, происходят структурные изменения, связанные с выпаданием, коагуляцией и растворением упрочняющих фаз, в результате чего изме-HHef H соотношение между прочностью зерен и их границ, происходит охрупчивание материала, изменяется тип разрушения. При-наличии указанных изменений в механизме разрушения, трудно ожидать, что критерий длительного разрушения при сложном напряженном состоянии окажется независимым от температурно-временного диапазона испытаний и свойственных ему изменений в структуре и особенностях разрушения материала. Большая серия опытов Джонсона, проведенных при сочетании растяжения с кручением на молибденовой стали при Г=500°С, меди при 7 = 250°С  [c.12]


Иногда для испытания материалов на усталость при сложном напряженном состоянии используются различные механические реверсоры и приставки к пульсаторам [338, 339]. Для исследования усталостной прочности при всестороннем сжатии кубиков использован реверсор, преобразующий переменное усилие пресса в двухосное и трехосное циклическое сжатие кубиков [36].  [c.247]

Интересные качественные результаты по низкотемпературным испытаниям некоторых малоуглеродистых и низколегированных сталей при плоском напряженном состоянии получены в работах [14, 292, 558, 576, 577, 578]. Однако данные этих испытаний не позволяют делать количественные оценки критериев низкотемпературной прочности материалов при сложном напряженнол состоянии. Ниже, по данным работ, выполненных в Институте проблем прочности АН УССР, дается анализ влияния температуры на предельное состояние текучести и разрушения трех сталей с различным содержанием углерода (0,53 0,37 0,05%). Вопросы, связанные с технологией обработки двух первых сталей, освеш ены в гл. X. Образцы из малоуглеродистой стали (С—0,05%) были изготовлены из прутков диаметром 30 мм одной плавки и подвергнуты огжигу в вакууме порядка мм рт. ст. при температуре 1280° С в течение четырех часов охлаждение — вместе с печью.  [c.347]

Детали машин в большинстве случаев имеют сложную форму с резкими изменениями сечений в виде буртов, галтелей, надрезов, отверстий и т. п. Все это вызывает в отдельных частях деталей концентрацию напряжений и является источником возникновения сложного напряженного состояния. Наиболее правильная оценка свойств материалов может быть дана при условии приближения методов испытания к практическим условиям работы. Проведение таких испытаний иногда методически трудно осуш,ествимо и часто связано с большими дополнительными затратами. В связи с этим представляют интерес методы создания в образце сложного напряженного состояния при обычных испытаниях на растяжение. Одним из таких методов является нанесение на цилиндрический образец кольцевого надреза. Изучение характера разрушения материала и процесса распространения пластической деформации в месте надреза может содействовать выяснению общих закономерностей пластической деформации при сложном напряженном состоянии.  [c.117]

Задачи испытания материалов. При изложении первых глав настоящего курса нам постоянно приходилось ссылаться на данные опытов, в результате которых устанавливались те или иные свойства материалов. Основные законы упругости и пластичности, полагаемые в основу различных теорий сопротивления материалов, получены путем прямых испытаний образцов, поставленных в специальные условия. Эти законы применимы, строго говоря, лишь в тех пределах, в которых они нашли прямое экспериментальное подтверждение. Так, если сталь проявляет упругие свойства в довольно большом диапазоне напряжений и закон Гука для стали является весьма точным законом, мягкие металлы, например свинец, обнаруживают пластическую деформацию уже при очень малых нагрузках и вряд ли вообще могут считаться упругими. Поэтому, применяя выводы сопротивления материалов к новым материалам, необходимо подвергать их всестороннему исследованию. Некоторые основные гипотезы сопротивления материалов проверяются лишь для ограниченного числа частных случаев, тогда как теория придает им универ--сальный характер. Так, например, условие пластичности при сложном напряженном состоянии мы считаем справедливым для любых напряженных состояний, хотя имеющийся опытный материал, на основе которого эти условия были сформулированы, относится почти исключительно к двухосному напряженному состоянию, да и то не при всех возможных соотношениях между главными напряжениями. Поэтому одна из важных задач состоит в принципиальном выяснении на опыте правильности тех или иных механических теорий и установлении траниц их практической применимости.  [c.122]

Прочность при низких температурах. Хрупкое разрушение стальных конструкций наблюдается особенно часто при низких температурах. Упомянутые выше случаи разрушения резервуаров а судов происходили при температурах ниже нуля. В условиях крайнего севера, где металлические конструкции и механизмы работаюг зачастую при температурах —40° и —50°, хрупкие разрушения, особенно часты, и проектирование сооружений, работающих в этих, условиях, требует особого внимания. Явление хрупкости стали при низких температурах получило название хладноломкости. Схематическое объяснение хладноломкости может быть следующее (А. Ф. Иоффе,. 1924 г.). Пластические свойства металла в сильной степени зависят от температуры, предел текучести с понижением температуры повышается. В то же время сопротивление отрыву практически не зависит от температуры. Поэтому при низких температурах условия перехода от хрупкого разрушения к пластическому меняются и отрыв становится возможным прежде, чем наступит пластическое состояние. В частности, и при растяжении может случиться, что образец разорвется прежде, чем появятся пластические деформации. Не у всех металлов оказывается возможным получить хрупкое разрушение при растяжении за счет понижения температуры металлы с гранецеитри-рованной решеткой сохраняют пластические свойства при весьма низких температурах, среднеуглеродистая сталь, весьма пластичная в обычных условиях, становится хрупкой при растяжении лишь при температуре жидкого водорода. При динамическом деформировании, предел текучести оказывается выше, чем при статическом, поэтому критическая температура хладноломкости, то есть температура перехода от вязкого разрушения к хрупкому, повышается, В опытах Давиденкова Н. Н. (1936 г.), который испытывал на ударное растяжение цилиндрические образцы из среднеуглеродистой стали, критическая температура получилась —95° для крупнозернистой структуры и — 160° для мелкозернистой. При сложном напряженном состоянии, например в месте концентрации напряжений, условия перехода от пластического разрушения к хрупкому будут другими и критическая температура, определенная в этих условиях, отличается от критической температуры, найденной путем испытания гладких образцов иа растяжение. В настоящее время не существует теории, которая позволяла бы надежным образом производить расчеты на прочность в условиях низких температур с тем, чтобы предусматри вать возможность хрупкого разрушения, однако надлежащий выбор, материалов и соблюдение некоторых конструктивных и технологических предосторожностей позволяют избежать хладноломкости.  [c.411]

В действительности же этот способ оказывается нереальным, так как при каждой новой комбинации главных напряжений пришлось бы снова производить эксперимент и опытным путем получать каж ь й раз свои значения главных предельных напряженни. На практике встречается такое большое количество различных сочетаний главных напряжений, что. для всех применяемых конструкционных материалов создать каждое нз них в лабораторных условиях оказывается неосуществимым не только из технических, по и экономических соображений. Поэтому возникает неббходимость оценивать прочность в сложном напряженном состоянии, основываясь на результатах испытаний материалов иа одноосное растяжение. Это становится возможным при использовании так называемых гипотез прочности — научных предположений о причинах перехода материалов в опасное состояние.  [c.321]

Полезно сравнить различные экспериментальные методы. В испытаниях на откол и при определении динамических диаграмм деформирования [156], волны напряжений являются одномерными, т. е. для измерения прочностных свойств материалов используются вполне определенные напряженные состояния. Однако при испытании на соударение условия нагружения определяются контактом поверхности с затупленным телом и реализуется сложное напряженное состояние, В методах Изода и Шарни нож маятника имитирует реальный удар по образцу в форме балки. Реальный характер соударения с внешним объектом имитируется и при баллистических испытаниях, воспроизводящих локальное неоднородное напряженное состояние в окрестности области контакта. Однако различная природа инициируемых напряженных состояний исключает возможность сравнения различных методов. В частности, не всегда можно сопоставить данные, полученные методами Изода и Шарпи. Кроме того, из-за малого размера образцов при большом времени контакта (например, 10" с) возникает многократное отражение импульса, что затеняет его волновую природу, проявляющуюся в больших образцах или в реальных конструкциях. Однако при баллистических испытаниях, когда используются тела диаметром порядка 2 см, движущиеся с большой скоростью, время контакта может составлять менее 5 х 10 с. При скорости волны 6 мм/мкс энергия удара в пластине концентрируется в пределах круга с радиусом, не превышающем 30 см. В пластине больших размеров можно получить меньшее число отражений, чем в малом образце. По мнению авторов, масштабный эффект является существенным при испытаниях на удар. Для экстраполяции экспериментальных данных на протяженные конструкции необходимо, чтобы помимо других параметров сохранялось постоянным отношение их1Ь, где т — время контакта, и — скорость волны, Ь — характерный размер.  [c.315]


Тонкостенные трубы, нагруженные внутренним или наружным давлением, продольной нагрузкой и крутящим моментом, являются наиболее приемлемыми образцами для испытания композиционных материалов в условиях сложного напряженного состояния. Наиболее трудным моментом при использовании таких образцов является обеспечение чистых граничных условий и предотвращение возникновения нежелательных напряжений. Относительный диаметр трубок должен быть достаточно большим, чтобы обеспечить плоское напряженное состояние и минимизировать нормальные напряжения. Далее следует понимать, что аналитические теории прочностп могут в лучшем случае предсказывать возможность разрушения, но не его вид. Последнее требует дополнительных экспериментальных данных.  [c.176]

Работа остаточной деформации может быть определена испытаниями на изгиб и на кручение как площадь диаграмм, снятых при изгибе и кручении (рис. 20). Работу разрушения при изгибе А обычно выражают в джоулях. Ислытание на изгиб, при котором напряженное состояние более благоприятно, чем при чистом растяжении, весьма пригодно для оценки высокотвердых, ледебуритных и поэтому хрупких инструментальных сталей и материалов. В специальной литературе часто можно встретить случаи использования значений прочности на изгиб для характеристики вязкости ледебуритных сталей. Для оценки вязкости быстрорежущих сталей часто применяют также испытание на кручение, которое может характеризовать прежде всего ожидаемое поведение спирального сверла. Однако этот метод определения намного сложней и дороже испытания на изгиб и растяжение. Работа разрушения, определяемая разными методами, из-за влияния особенностей распределения напряжений и формы образцов не может быть сопоставлена сами по себе эти способы могут быть использованы для сравнительной оценки сталей, их структуры и вязкости.  [c.38]


Смотреть страницы где упоминается термин Испытания материалов при сложном напряженном состоянии : [c.262]    [c.279]    [c.150]    [c.119]    [c.4]    [c.305]    [c.365]    [c.381]   
Смотреть главы в:

Сопротивление материалов Том 2  -> Испытания материалов при сложном напряженном состоянии



ПОИСК



Другие методы статических испытаний материалов при сложном напряженном состоянии

Испытание материалов

Испытания материалов в условиях сложного напряженного состояния

Испытания при сложном напряженном состоянии

Методы механических испытаний материалов при сложном напряженном состоянии

Механические испытания материалов при сложном напряженном состоянии в условиях высоких и низких темпераОсобенности методики испытаний при высоких температурах

Сложное напряженное состояние

Состояние материала

Состояние материала сложное



© 2025 Mash-xxl.info Реклама на сайте