Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охрупчивание материала

Концентрация напряжений снижается с повышением температуры вследствие увеличения пластичности и повышается при минусовых температурах вследствие охрупчивания материала.  [c.300]

Особенно опасна концентрация напряжений при циклическом нагружении, которое, как известно, приводит к охрупчиванию материала, и разрушение происходит по типу хрупкого разрушения. В этом случае вводят эффективный (действительный) коэффициент концентрации напряжений  [c.181]


Из приведенных рассуждений вытекают следующие выводы. В случае водородного роста трещин можно выделить три состоя-, ния, которым отвечают три интервала изменения коэффициента К [374, 435]. Первое состояние характеризуется тем, что физикохимические процессы в данной системе металл — водород не обеспечивают выполнение условий начала роста трещины. Этому состоянию соответствует интервал изменения К S К,л, где K,h — пороговый коэффициент интенсивности. Второе состояние характеризуется медленным докритическим подрастанием трещин при Kth < К < /Сн, когда рост трещины тормозится процессами доставки водорода в очаг разрушения. Здесь Кся — критический коэффициент интенсивности в условиях водородного охрупчивания материала. Наконец, третье связано с закритическим ростом трещины при К > Ксн, обеспечиваемым при данном распределении водорода в системе чисто механическим фактором — уровнем нагружения. В последнем случае развитие трещины по своему характеру (но не по микромеханизму роста) близко ее развитию при статических испытаниях в обычных условиях. При этом параметр трещиностойкости по физическому смыслу наиболее близок к характеристике обычной вязкости разрушения Ki (хотя, вообще говоря, ей не тождествен).  [c.326]

Охрупчивание материала при возрастании частоты нагружения может возникнуть в условиях эксплуатации, например, применительно к лопаткам компрессора высоких ступеней газотурбинного двигателя. В условиях вынужденных колебаний от газодинамического потока имеющие место повреждения лопатки создают предпосылки возникновения резонансных явлений, когда при высоком уровне частоты нагружения в несколько тысяч герц могут иметь место возрастающие по уровню нафузки от резонанса. Однако следует оговориться, что возрастание частоты нагружения, особенно при резонансе, сопровождается снижением амплитуды колебаний. Поэтому с возрастанием частоты нагружения трещина может распространиться на все сечение детали только в припороговой области ее скоростей.  [c.342]

Одновременно с процессом охрупчивания материала при возрастании частоты нагружения происходит изменение влияния окислительных процессов у кончика трещины на развитие разрушения при неизменном состоянии окружающей среды с точки зрения ее влажности и температуры. Проявляется это изменение через уменьшение доступа окружающей среды к вершине трещины. Возрастание частоты происходит в условиях снижения раскрытия трещины OD, что отражает возрастание циклического предела текучести материала в соответствии с условием  [c.343]


В работах [61] и [96] предложено связывать сокращение периода зарождения трещин с водородным охрупчиванием материала по следующему механизму. При выдержке t материала под нагрузкой происходит диффузия свободного Н2 в очаг разрушения и его скопление по полосам скольжения или по границам (а , + Р ,)-структуры, при этом крупные размеры зерен и а-пластин активизируют этот процесс. При высоком уровне напряжения водородное охрупчивание сопровождается эффектом ползучести, особенно при нагреве материала.  [c.366]

Анализируя аварийность криогенной техники, следует учитывать опасности, обусловленные вторичными эффектами. Например, разрушение, происходящее по любой из рассмотренных ранее причин (охрупчивание материала, сокращение размеров, повышение давления и т.д.), приводит к значительной утечке криогенной жидкости. В свою очередь, это может вызвать пожар или взрыв, удушье, разрушение от охрупчивания материалов, осколочное разрушение. Удушье наступает при утечке азота. Таким образом, небольшое начальное повреждение может привести к большой вторичной аварии.  [c.410]

Коррозия и механические свойства. Растяжение за пределом упругих деформаций увеличивает скорость коррозии. Если напряжения в металле ниже определенного уровня, разрушения не наступает даже при значительной продолжительности испытаний в коррозионной среде. Здесь предполагается, что уменьшение поперечных размеров элемента вследствие коррозии невелико и его можно не принимать во внимание. При превышении же указанного уровня напряжений отрезок времени от нагружения до разрушения уменьшается с увеличением уровня напряжений. Этого в отсутствие коррозии не наблюдается. Имеет место явление так называемого внутрикристаллического и межкристаллического коррозионного растрескивания. В условиях определенных напряженных состояний (возникающих, например, при растяжении с кручением) и наличия коррозионно активной среды происходит охрупчивание материала.  [c.273]

Рис, 4.4), Влияние скорости деформирования на вид диаграммы а — е а) случай охрупчивания материала при увеличении скорости загружения б) случай увеличения пластических свойств при возрастании скорости загружения — при ударе, 2 — при статическом загружении [Фридман Я. Б. Механические свойства металлов,  [c.278]

В критерий включены три константы Л, S и т две из них не новы А может быть связана с истинным удлинением при разрыве и сопротивлением на разрыв, а S —это аналог сопротивлению отрыву. Таким образом, предлагаемое обобщение достигается довольно экономными средствами. Единственная новая введенная константа — показатель охрупчивания материала в объемном напряженном состоянии m — необходима по существу. (Фактически m это параметр, позволяющий построить одну кривую, подходящую асимптотически к двум пересекающимся прямым такая кривая должна быть гиперболой — А. Ф.) Потребность в ней ощущалась давно, так как хотя при оценке материалов много говорилось о влиянии объемности напряженного состояния на предельные пластические деформации, тем не менее никакой количественной меры этого качества до сих пор, насколько известно, предложено не было.  [c.602]

Таким образом, характер разупрочнения при отжиге, как н деформационного упрочнения при прокатке, монокристаллов молибдена является резко анизотропным. При одинаковой степени деформации и условиях обработки различно ориентированные монокристаллы молибдена могут разупрочняться либо в результате возврата и полигонизации, либо в результате рекристаллизации (при этом частично и полигонизации). Возникающая при отжиге полигональная структура весьма устойчива по отношению к термическому воздействию и сохраняется при длительных отжигах вблизи температуры плавления. Эта полигональная структура не является промежуточной стадией между структурами холодной деформации и рекристаллизации, а отвечает стабильному устойчивому состоянию. При этом наиболее важным является отсутствие высокоугловых границ зерен, с появлением которых связано рекристаллизационное охрупчивание материала и другие эффекты.  [c.99]

Общеизвестно влияние на переходную температуру охрупчивания материала в зонах технологических и эксплуатационных дефектов. Так, для низкоуглеродистых сталей повышение температуры перехода в хрупкое состояние, обусловленное динамическим старением вследствие концентрации термопластических сварочных деформаций, достигает 80 С [31. Выполненные в ИЭС им. Е. О. Па-  [c.281]


Прохождение двух противоположно направленных процессов, один из которых затухает во времени, другой протекает непрерывно, обуславливает появление максимума на кривых зависимостей твердости, модуля упругости, кратковременной прочности. Значение и время образования максимума определяются температурой термообработки. После термообработки вследствие увеличения и роста микродефектов структуры и охрупчивания материала  [c.257]

В процессе эксплуатации барабана представляется также неопасным и действие коррозионной среды, которая, ускоряя процесс возникновения начальной трещины термической усталости, способствует притуплению кончика трещины, а соответственно и снижению опасной концентрации напряжений в этой локальной зоне охрупчивания материала. Сказанное подтверждается, с одной стороны, экспериментальными данными, а с другой стороны, характером трещин в барабанах.  [c.23]

Меры борьбы с образованием трещин длительной прочности следуют из их причин. В правильно спроектированном и изготовленном роторе, в частности, рассчитанном с учетом постепенного охрупчивания материала, досрочное появление трещин длительной прочности на расточке ротора может произойти только вследствие повышения температуры ротора. В свою очередь это возможно по двум причинам из-за увеличения температуры пара перед ЦВД или ЦСД или из-за роста температуры пара в камере регулирующей ступени, например, при  [c.481]

При изготовлении отливки должна тщательно соблюдаться технология, сводящая к минимуму загрязнение материала фосфором, серой, мышьяком и другими примесями, которые приводят к охрупчиванию материала, снижению и повышению вероятности коррозионного растрескивания.  [c.489]

Следует ожидать, что дальнейшее увеличение времени нагружения (уменьшение нагрузки) приведет к росту размера частиц и охрупчиванию материала. При малых уровнях нагрузки деформационное старение уже в меньшей мере интенсифицируется деформацией, поскольку она мала, и определяется в основном вре-  [c.181]

Запас вязкости не может быть равным нулю, так как возможны возникновения в процессе эксплуатации, ухудшающие вязкость (повышающие порог хладноломкости) обстоятельства, а это приведет к охрупчиванию материала. В соответствии с этим, положение порога хладноломкости характеризует сопротивление хрупкому разрушению. Чем ниже положение порога, тем более надежен материал, так как охрупчивающие факторы могут еще и не перевести его в состояние, склонное к хрупкому разрушению.  [c.74]

В зоне зарождения и докритического роста трещины, вызвавшей лавинообразное разрушение теплообменника, обнаружены следующие недопустимые дефекты кольцевого шва непровар в корне глубиной 1—3 мм на длине 205 мм, горячие трещины, пленочные шлаковые включения между корневым и первым заполняющим швом размером до 5x10 мм и глубиной до 1,5 мм. Очагом разрушения теплообменника явился непровар в корне шва. Развитию разрушения способствовали отмеченные дефекты шва и низкотемпературное охрупчивание материала обечайки при температуре минус 36°С.  [c.51]

При высоком для данной температуры уровне нагружения процесс разрушения сопровождается пластическим деформированием, а на образцах, подвергнутых испытанию, образуется шейка. При низких для данных температур уровнях нагрузки процесс разрушения идет путем накопления микротрещин и охрупчивания материала. Поэтому процесс разрушения во времени нужно рассматривать с учетом характера разрушения и использовать соответствующ,ие этому случаю соотношения. Кривая длительной прочности может быть построена по результатам экспериментов на цилиндрических образцах, гсоторые выдерживают под постоянной растягивающей нагрузкой до наступления разрушения. Отложив по оси ординат напряжение, а по оси абсцисс — время до разрушения для данного напряжения, получим кривую длительной прочности (рис. 8.28).  [c.177]

В результате исследования закономерностей распространения сквозных трещин, как было продемонстрировано выше, выявлено убывание скорости роста трещин в связи с возрастанием Вместе с тем показано [75, 82], что при = 1 -1 О СРТ в некоторых случаях могут не отличаться. Более того, при разной асимметрии цикла можно наблюдать различный, немонотонный характер влияния второй компоненты нагружения на рост усталостных трещин. Так, в стали SM41 при = -1 скорость возрастала с переходом от положительного к отрицательному соотношению главных напряжений а при отсутствии асимметрии цикла (пульсирующий цикл) результат был противоположен. Объяснение такой ситуации было предложено на основе представлений об охрупчивании материала, которое возникает при увеличении степени стеснения пластической деформации. Увеличение среднего напряжения или гидростатического давления в вершине трещины при возрастании положительного соотношения главных напряжений настолько снижает пластичность, что материал начинает хрупко разрушаться в результате смены механизма. При хрупком разрушении имеет место возрастание, а не снижение СРТ.  [c.314]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]


Испытания лопаток из титановых сплавов и образцов, имитирующих условия консольного нагружения лопаток, показали, что при прочих равных условиях последовательное возрастание частоты нагружения на воздухе в естественных условиях окружающей среды приводит к постепенному охрупчиванию материала. В образцах из титанового сплава ВТЗ-1 испытания на консольный изгиб образцов, имитировавщих лопатки компрессора ГТД, показали, что последовательное увеличение частоты нагружения 40 90 —> 900 Гц вызывает подавление процесса формирования усталостных бороздок. Образцы имели типичную для лопаточного материала двухфазовую (а + (3) глобуляр-  [c.342]

Для коррозионностойкой стали 403 смену механизма разрушения с охрупчиванием материала наблюдали при испытаниях с частотой 14 кГц [2]. Усталостные бороздки не формировались, а параметр рельефа излома в виде шага псевдобороздок со средней величиной 6,7 10 мм превосходил величину прироста трещины за цикл нагружения в десятки раз.  [c.342]

Основным легирующим элементом дисковых Ti-сплавов является А1, содержание которого по техническим условиям в материале одной плавки может колебаться от 5 до 6,5 %. Исследования роли А1 показали [77], что повышение его содержания свыше 6 %, во-первых, сопровождается образованием высокодисперсионных выделений охрупчи-вающей г фазы во-вторых, препятствует снижению анизотропии свойств материала, так как способствует сохранению полученной при штамповке вытянутости кристаллов Р .-фазы. Поэтому следует ожидать, что с повышением содержания AI более 6 % в зоне роста трещины происходит охрупчивание материала, которое может привести к преимущественному росту трещины по межфазовым границам и соответствующему повышению СРТ.  [c.361]

Исследования при нормальной температуре Ti-сплавов IMI-685 [61] и Ti-6A1-4V показали, что по сравнению с непрерывным синусоидальным по форме циклом нагружения снижение частоты нагружения за счет введения выдержки т = 5 мин под нагрузкой вызвало 16-кратное снижение долговечности сплава IMI-685 и в 45 раз увеличило СРТ в сплаве Ti-6Al-4V [95]. В том же сплаве 1МГ685 с пластинчатой дв тсфазовой (а -ь Р ,)-струк-турой [96] выдержка х = 5 мин вызвала охрупчивание материала и привела к смене механизма его разрушения. При этом наблюдалось существенное увеличение СРТ во всем диапазоне КИН, отвечающих областям МНЦУ и МЦУ. Рельеф излома с усталостными бороздками сменился преимущественно фасеточным рельефом, отражающим двухфазовую структуру материала. Было также установлено, что на формирование рельефа может влиять термообработка. Закалка в 3 -области  [c.363]

Такое предположение позволяет сделать сопоставление данных работ [61] и [96]. В обеих работах исследовали один и тот же Ti-сплав с параметрами структуры, характеризуемыми крупными а -пла-стинами в первичных (3]5,-зернах размером 0,5-1 мм. В работе [43] при выдержке материала под нагрузкой в течение нескольких минут изменения СРТ по сравнению с х = О не отмечали. В работе [96] при выдержке произошла смена механизма разрушения с вязкого внутризеренного, которому отвечал бороздчатый рельеф излома, на межсубзеренный с фасеточным рельефом излома, что сопровождалось сокращением в 16 раз периода роста трещины. В связи с фактом возрастания скорости роста трещин было подчеркнуто [96] наличие в материале 0,004 % Н2. Это количество Н2 достаточно мало по массе, но в другой работе [81] при длительном статическом нагружении образцов из сплава 0Т4 по схеме Трояно при объемной доле Н2 в 0,003-0,005 % наблюдали их замедленное разрушение и увеличение СРТ при высоком уровне напряжений. Такое разрушение, как говорилось выше, сопровождалось образованием гидридов и развитием трещин по ним. Но в работе [61] снижение долговечности было объяснено диффузией имеющегося в материале Н2 в полосы скольжения. Если это так, то при выдержке данный процесс должен сопровождать и рост трещины, способствуя охрупчиванию материала, однако это в работе [60] не наблюдалось. Поэтому только наличием в сплаве Н2 нельзя объяснить снижение периода зарождения трещины и увеличение СРТ. По всей вероятности, имелась некоторая субструктурная особенность состояния материала по межфазпым границам, которая вызывала рост трещины по ним в течение выдержки под нагрузкой или охрупчивание по плоскостям скольжения в монофазном материале.  [c.368]

Применительно к Ti-сплавам влияние окружающей среды также выражено в увеличении СРТ [128-132]. Механизмы охрупчивания материала, связанные с проникновением водорода у вершины трещины, в большей степени аналогичны механизмам влияния окружающей среды на рост трещины в сталях. Особенно заметными они становятся в случае длительной выдержки материала под нагрузкой в условиях эксплуатации, что характерно для дисков компрессоров двигателей. Однако, как было показано в предыдущих разделах, необходимо зачитывать чувствительность структуры материала по границам пластинчатой, глобулярной или моноструктуры после изготовления детали на выдержку его под нагрузкой, а уже затем давать оценку роли окружающей среды в кинетике трещин. Очевидно, что для структурно чувствительных к выдержке под нагрузкой Ti-сплавов роль окружающей среды в кинетике трещин может оказаться значительной. Применительно к сплавам, не чувствительным к выдержке под нагрузкой, рост трещин сопровождается формированием усталостных бороздок, которые наблюдают даже в вакууме [131].  [c.389]

Рассмотрим несколько примеров повреждений шпилька М52, выполненная из стали 25Х1М1Ф1ТР, работавшая при температуре 540 С, после 17 тыс. ч работы разрушилась. Напряжение затяга 300 МПа. Внутреннее давление пара 10 МПа, твердость шпильки 415 НВ. Структура материала шпильки — игольчатый сорбит отпуска. При специальном травлении выявлены границы первичных аустенитных зерен —индикатора теплового охрупчивания материала шпильки. Причиной разрушения явилось занижение температуры отпуска при термической обработке  [c.44]

С понижением вязкости материала изменяется тип р.тз- рушения от высокоэнгргетического сдвига до низкоэнергетического скола или отрыва. Поэтому резкое падение значений ударной вязкости свидетельствует о наступлении разрушения материала сколом, т. е. об охрупчивании материала при данных условиях испытания. При понижении температуры разрушение сколом характерно для распространенных малоуглеродистых и низколегированных сталей. Поэтому критическая температура хрупкости, установленная по резкому снижению величин ударной вязкости, пригодна для сопоставительной оценки их х.ладноломкости сталей.  [c.34]

Ранее было показано [3], что при малоцикловом нагружении при температуре интенсивного деформационного старения (650° С) количество, размер и характер расположения частиц существенно зависят от условий деформирования. Характер выпадения новой фазы (карбидных частиц) определяется уровнем действующей нагрузки (деформации), временем нагружения и формой цикла, причем при заданном режиме нагружения (одно- и двухчастотное, программное и пр.) наблюдается сочетание времени и нагрузки, когда процессы старения вызывают хрупкое разрушение образца. Нагрузка ниже такого уровня приводит к тому, что время старения оказывается недостаточным для полного охрупчивания материала и излом имеет вязкий или смешанный характер. При малых нагрузках деформационное старение протекает медленнее и процессы выпадения частиц новой фазы оцределяются в основном временем нагружения. Чем ниже действующее напряжение, тем бо,пьше времени необходимо для возникновения хрупких состояний.  [c.67]


Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида МегзСб), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, пре-де.л текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной ( решетчатой ) структуры.  [c.71]

В настоящее время разработаны новые высокопрочные сорта сталей, однако их широкому промышленному применеш1ю препятствует повышенная склонность этих материалов к коррозионно-механическому (усталость и растрескивание) разрушению [41]. Сложилось мнение, что этап собственно развития трещин в подобных материалах состоит из двух подэтапов чисто коррозионного медленного углубления трещины в материал вследствие растворения напряженного металла в ее вершине и более быстрого скачкообразного (дискретного) подрастания трещины. Считается, что на последнем подэтапе определяющую роль играет водородное охрупчивание материала. Наличие этих подэтапов подтверждается экспериментально [41].  [c.61]

Здесь Эр — интенсивность пластических деформаций, отсчет которых ведется от наклепанного, а не от естественного первоначального изотропного состояния тела Л—физическая константа материала, Л = рЗх — предельное значение Эр при разрушении путем чистого сдвига Р — коэффициент внутреннего трения, <т = = (1/3) ((Т1 + с 2 + сГз) S —физическая постоянная — сопротивление материала всестороннему разрыву /и —физическая константа материала — показатель охрупчивания материала в объемном напряженном состоянии . (Если S = а,то разрушение происходит без предварительных пластических деформаций, если a S, orменьших значениях пластических деформаций происходит разрушение отсюда и название /п — коэффициент охрупчивания) = + —суммарное пластическое разрыхление (см. предыдущий раздел), слагающееся из начального разрыхления и разрыхления = pL, приобретенного в процессе нагружения L = Yd9 .d3fr, э . —девиатор тензора пластических деформаций L = 2N3p, Эр = " /э 5 .= = ( I7)max Р змах пластических деформаций).  [c.600]

В сталях эаэвтектойдного состава, закаленных на мартенсит, снижение абразивной износостойкости сталей при содержании углерода свыше 1,2%" объясняется охрупчиванием материала, Г приводящего к выкрашиванию из поверхностей трения отдельных микрообъемов металла.  [c.5]

Наиболее частой причиной отказов является охрупчивание материала детали при ее эксплуатации. Так,, например, если чашь,.деталей в партии имеет пониженные пластические свойства (низкие ударную вязкость и относительное удлинение при разрыве), 4о в процессе эксплуатации под действием различных причин, главным образом экстренных перецрузок, пластические свойства у них еще более понизятся, и материал станет хрупким, т. е. он будет разрушаться при напрян ениях меньших предела текучести. Такая, возможность охрупчивания материала деталей, как известно, совершенно не учитывается расчетом.  [c.4]

Если левая часть приведенных соотношений меньше правой, то материал не будет склонен к хрупкому разрушению Отсюда видно, что повышение всех факторов, приводящих к упрочнению (рост ст,, Стт). а также увеличение размера зерна d, прочности блокирования дислокации Ку будут увеличивать левую часть соотношений и, следовательно, приводить к охрупчиванию материала Поскольку при уп рочнении значения Tj и Ку растут, то компенсирующим фактором этого вредного влияния может быть лишь уменьшение размера зерна d  [c.48]


Смотреть страницы где упоминается термин Охрупчивание материала : [c.44]    [c.731]    [c.596]    [c.84]    [c.341]    [c.126]    [c.14]    [c.164]    [c.110]    [c.307]    [c.126]    [c.172]    [c.184]    [c.29]   
Прикладная теория пластичности и ползучести (1975) -- [ c.257 ]



ПОИСК



Охрупчивание



© 2025 Mash-xxl.info Реклама на сайте