Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура критическая хладноломкости

Механические свойства [I] значения критической температуры структурной хладноломкости (to s) для некоторых сталей  [c.109]

Существенное влияние легирование оказывает на положение критической температуры хрупкости (хладноломкости). Например, кремний и кислород повышают критическую температуру хрупкости, а хром, марганец, алюминий и медь при их содержании в несколько процентов ее понижают. Особенно сильно снижает температуру хладноломкости никель. Склонность феррита к хрупкому разрушению в основном определяет это свойство и у стали.  [c.16]


Величина механических характеристик существенно зависит от таких внешних и внутренних факторов, как химический состав материала, вид предшествующих воздействий (например, деформация), состояние поверхности, температура и наличие химически агрессивной среды и др. Так, при повышении температуры прочностные характеристики сильно снижаются и предел текучести при температуре плавления стремится к нулю чем ниже температура плавления сплава, тем при более низких температурах наступает резкое падение прочности. Понижение температуры обусловливает переход от вязкого разрушения к хрупкому (критическая температура — порог хладноломкости).  [c.90]

Свойство материала хрупко разрушаться с понижением температуры называется хладноломкостью. Помимо температуры, она зависит от влияния многих факторов. Хладноломкость проявляется при определенных условиях и является скорее не свойством, а состоянием материала. Основной характеристикой хладноломкости является критическая температура хрупкости. С помощью этой характеристики оценивают и сопротивление хрупкому разрушению материала. Критическая температ)фа хрупкости не является константой материала и определяется целым рядом факторов.  [c.20]

Ударная вязкость обычно уменьшается. Плавное падение ударной вязкости при снижении температуры наблюдается у многих конструкционных сталей, никелевых и титановых сплавов. Для железа, углеродистых сталей и некоторых других материалов характерно резкое уменьшение величины ударной вязкости в определенном интервале температур, называемом критическим температурным интервалом хрупкости. Этот интервал характеризует переход от вязкого (волокнистого) излома к хрупкому (кристаллическому) излому с низким значением поглощаемой работы разрушения. Нижняя критическая температура хрупкости (хладноломкости) 4 служит сравнительной оценкой хладноломкости материала. Чем выше критическая температура хрупкости, тем более подвержен материал хрупкому разрушению при эксплуатации в условиях низких температур.  [c.33]

В наибольшей степени влияние легирования сказывается на ударной вязкости феррита, которая, как правило, уменьшается, и на положении критической температуры хрупкости (хладноломкости) Тк. Кремний повышает Тк. Хром, марганец, алюминий и медь при их содержании в несколько процентов понижают Тк. Особенно сильно понижает Тк никель. В общем случае элементы, способствующие укрупнению зерна или слабо изменяющие его величину, повышают Г к тем интенсивнее, чем сильнее они повышают предел текучести феррита при низких температурах. Элементы, измельчающие зерно, до их содержания, при котором достигается предельное изменение величины зерна, понижают Тк> а затем повышают ее. Однако главная роль легирующих элементов в смещении Тк, по-видимому, связана с изменениями, вызываемыми ими в составе и строении граничного слоя зерна (границы зерна). В частности, углерод (при малых содержаниях) и кислород повышают Тк, очевидно, вследствие обогащения ими граничного слоя зерна.  [c.563]


Существуют способы оценки склонности металла к возникновению хрупкого разрушения и его сопротивления распространению хрупкой трещины. Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов Шарпи с V-образным надрезом на ударный изгиб при различных температурах. Критерий оценки — критическая температура перехода от вязкого к хрупкому разрушению 7, или порог хладноломкости (рис.  [c.545]

Воздействие интенсивных потоков нейтронов на материал корпуса и других конструкций реактора приводит к их структурным изменениям, что вызывает изменение их физико-механических свойств. Наиболее опасен переход облученного материала стального корпуса, несущего давление, из вязкого состояния в хрупкое, характеризующееся небольшой энергией разрушения. Состояние хладноломкости корпусных сталей наступает в области температур ниже критической температуры хладноломкости 7хл. Величина этой температуры возрастает при облучении.  [c.69]

Для количественного сопоставления склонности материалов к хрупкому разрушению в зависимости от температурных условий эксплуатации широко используется способ серийных испытаний на ударную вязкость стандартных образцов с надрезом. По результатам этих испытаний обычно строят температурные зависимости ударной вязкости Ои и доли вязкой составляющей в изломе Fb- Для хладноломких металлов эти зависимости имеют резкий спад, по которому определяют критическую температуру хрупкости Гкр. При более пологих переходах в область хрупкого состояния используют условные приемы определения Гкр по допуску на снижение Дн или Fs- Полученная из испытаний критическая температура хрупкости Гкр(°К) сопоставляется с минимальной температурой металла в условиях эксплуатации Та.  [c.20]

Для более легированных и менее хладноломких сталей повышенной прочности крутизна температурных зависимостей коэффициентов интенсивности напряжений, определяемая коэффициентом р в уравнении (3.4), ослабевает, как это следует из рис. 3.4 и 3.13. В этом случае запасы прочности в закритической области можно установить в зависимости от температуры. Принимаемый при этом коэффициент запаса должен отражать достоверность определения критической и эксплуатационной температуры.  [c.64]

На сопротивление усталости существенно влияет среда не только в смысле коррозии, но также в смысле температурных условий работы конструкций. Понижение температуры затрудняет пластическую деформацию и приводит к повышению выносливости, особенно для полированных образцов из малоуглеродистых пластичных и хладноломких сталей. В области закритической температуры для хрупкого состояния пределы выносливости приближаются к критическим напряжениям, достаточным для хрупкого разрушения и значительно (в 1,5—2 раза) превышающим значения o i для комнатной температуры при отсутствии концентрации напряжений. При наличии концентрации напряжений повышение (а 1)к также имеет место, но в меньшей степени (в 1,3—1,5 раза). Наименее выражено повышение пределов выносливости с понижением температуры у вязких хромоникелевых сталей и легких сплавов, не обладающих выраженной хладноломкостью. Однако  [c.160]

Кристаллизация под высоким механическим давлением способствует очищению границ зерен стали от неметаллических включений, повышению однородности структуры, что препятствует хрупкому разрушению. Ударная вязкость прессованной при кристаллизации стали 45Л выше, чем у литой в обычных условиях во всем диапазоне температур от - -20 до —80° С. Следовательно, давление при кристаллизации способствует сдвигу критической температуры хладноломкости в область низких температур.  [c.135]

Хладноломкость обычно связывают со значительным возрастанием предела текучести при низких температурах, однако у чистого металла она не наблюдается. Критическое напряжение сдвига (КНС) монокристаллов цинка чистотой 99,999 % не повышается даже при охлаждении до 1,4 К, тогда как у цинка чистотой 99,99 % оно возрастает в несколько раз (рис. 17) [1].  [c.47]


Следует подчеркнуть, что оценка хладноломкости материала по критериям вида изломов образца (процент кристаллической составляющей излома, сужение дна надреза, вид поверхности разрушения непосредственно вблизи дна надреза) не исключает субъективности подхода разных исследователей. По виду излома нельзя определить количество энергии, поглощенной при развитии разрушения. Поэтому при определении склонности стали к хрупким разрушениям по результатам, ударных испытаний следует отдать предпочтение методам оценки критической температуры хрупкости по величине работы распространения трещины в образце [40, 41].  [c.36]

В подтверждение своей идеи Стро [63] установил зависимость между критической температурой хладноломкости и величиной зерна  [c.43]

Д а в и д е н к р в Н. Н., О связи критической температуры хладноломкости со скоростью деформирования, Журнал технической физики т. IX, вып. 12, 1939.  [c.43]

Для хладноломких металлов (например, углеродистые стали) в области температур ниже критических разрушающие напряжения могут уменьшаться до 0,Ь , особенно при наличии концентрации напряжений и технологических дефектов.  [c.484]

Понижение температуры окружающей среды приводит к хладноломкости болтов — хрупкому разрушению без заметной пластической деформации. Склонность металлов к хрупкому разрушению оценивают критической температурой хрупкости которая характеризуется резким снижением пластичности и работы деформации, изменением вида излома волокнистое макростроение заменяется кристаллическим. По температуре можно косвенно судить о безопасной работе резьбового соединения чем ниже критическая температура, тем безопаснее эксплуатация деталей из данного материала при низких температурах. Следует отметить, что температура хладноломкости не полностью отражает склонности к замедленному хрупкому разрушению резьбовых соединений при нормальных температурах. Например, хр болтов из стали ЗОХГСА ниже, чем болтов из мягкой отожженной стали 15. Однако последние не склонны к замедленному разрушению при нормальной температуре. При снижении температуры до / предел ползучести при этом значительно повышается.Разрушение деталей происходит после более или менее существенной пластической деформации.  [c.171]

Значительное влияние на склонность р-сплавов к хрупким разрушениям оказывает и наклеп. В результате наклепа на 20% критическая температура хрупкости повышается с —70 до —45° С. Таким образом, общие закономерности охрупчивания р-сплавов титана в области низких температур полностью аналогичны закономерностям хладноломкости сталей и других металлов с ОЦК-решеткой.  [c.123]

Поскольку хрупкий и вязкий характер разрушения при ударном изгибе для стали можно четко различить по виду излома, порог хладноломкости нередко определяют по количеству волокна В, %) матовой — волокнистой составляющей в изломе. Количество волокна в изломе определяется как отношение площади волокнистого (вязкого) излома к первоначальному расчетному сечению образца. Далее строится сериальная кривая процент волокна — температура испытания (рис. 70). За порог хладноломкости принимается температура, при которой имеется 50 % волокна 50 (рис. 70), что примерно соответствует КСТ/2. Для ответственных деталей за критическую температуру хрупкости нередко принимают температуру, при которой в изломе имеется 90 % волокна (4о), а ударная вязкость сохраняет высокое значение. Нередко определяют верхний в порог хладноломкости,  [c.100]

Испытания на хладноломкость и критическую температуру хрупкости  [c.44]

Критическая температура структурной хладноломкости в условиях подобия фракгальных структур зоны предразрушения.  [c.106]

Таким образом, в зависимости от типа динамической структуры, колличественно характеризующейся показателем фрактальной размерности зоны предразрушения, при понижении температуры может реализоваться структурный переход от рассеяного разрушения (в результате образования объемных фрактальных кластеров) к сосредоточенному разрушению за счет образования фрактального перколяционного кластера по фронту макротрещины. Этот переход отвечает критической температуре структурной хладноломкости, равной -75 С при D =l,67. Анализ литературных данных  [c.108]

В 1аб шце 2.3 приведены расчетные данш.1е но критической температуре структурной хладноломкости (to,s) для некоторых сталей с использованием соотношения (2.31).  [c.108]

Таким образом, способ ТО графитизирующим отжигом с последующим низкотемпературным термоциклированием рекомендуется применять вместо гомогенизирующего отжига высокопрочного чугуна. При этом ожидается значительный экономический эффект за счет снижения температуры и времени ТО, а также за счет получения более высоких механических свойств материала. Кроме того, изделия из высокопрочного чугуна, предназначаемые для работы в условиях Севера и резко континентального климата, целесообразно подвергать графитизирующему отжигу с последующей ТЦО, так как при этом наиболее сильно снижается критическая температура порога хладноломкости.  [c.132]

При быстро протекающей деформации при ударе возникает вязкое или хрупкое разрушение. Для хладноломких материалов важнейшим фактором возможности хрупкого р зруызенйя является снижение температуры. Критическая температура хрупкости приравнивается резкому уменьшению ударной вязкости или некоторому условному ее снижению (обычно 40%). Температурный запас вязкости определяется по формуле  [c.231]

Следует подчеркнуть, что порог хладноломкости в большой степени зависит от величины зерна стали и резко понижается с ее уменьшением (фиг, 7). Такие испытания могут косвенно определить сопротивление металла хрупкому разрушению. Определение критической температуры хладноломкости должно получить особое распро странение при испытании сварных соединений, броневых листов, орудийных стволов и других деталей. Однако ударные испытания необходимо проводить только для материалов, склонных к хладно-.юмкости. На фиг. 8 приведены температурные кривые ударной. вязкости при понижающихся температурах. Для хладноломких металлов (цинк, железо) и частично хладноломких материалов (магний) с понижение.м температуры испытания ударная вязкость сни-J кaeт я, а для нехладноломких материалов- (алюминиевый сплав с  [c.17]


Более сложные зависимости критических параметров от температуры наблюдаются у металлов с объемно-центрированной кубической решеткой (ОЦК металлов), для которых типично явление хладноломкости [211, 242]. Впервые весьма подробно исследование поведения ОЦК металлов при различных температурах было сделано в работе [31]. Детальное, обобщающее многие экспериментальные работы, исследование критических характеристик разрушения различных ОЦК металлов с простой структурой проведено в работе [211], где также выполнен фрак-тографический анализ изломов образцов в зависимости от тем-  [c.51]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]

Из сказанного следует, что роль температуры и скорости деформирования особенно существенна для хладноломких сталей. Поэтому их использование в около-критической и закритической (по отношению ко второй критической температуре) областях температуры порож-  [c.57]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

В интервале значений температуры между Гкр и Т крг для конструктивных элементов, изготовленных из сплавов, обладающих хладноломкостью, возникают ква-зихрупкие состояния, достижение которых происходит после образования пластической деформации, зависящей от температуры. Квазихрупким состояниям свойственно быстрое распространение трещин при критических значениях напряжений. Сопротивление распространению таких трещин характеризуют диаграммы разрушения, 60  [c.60]

Повышение напряжения трения решетки матрицы Од (рис. 1.2) приводит к некоторому росту предела текучести при снижении температуры вязкохрупкого перехода, но одновременно весьма сильно уменьшается критическое напряжение разрушения и возникает ре альная опасность хрупкого разрушения. Нам кажется, что это явле ние тесно связано с хладноломкостью стали. Следовательно, увеличение напряжения Пайерлса — Наббарро для упрочнения объема пока неэффективно, модель требует дальнейших глубоких исследований, Вместе с тем рост напряжения трения решетки при усилении доли ковалентности в межатомной связи может оказаться весьма благоприятным в случае применения покрытий интерметаллидного карбидного или нитридного типов.  [c.9]

Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]

Критическая температура перехода стали в хрупкое состояние в значительностй степени зависит от величины зерна стали. Пластичность малоуглеродистой стали при низких температурах повышается с уменьшением величины зерна, а температура перехода в хрупкое состояние сдвигается в сторону низких температур при измельчении перлита [62]. Увеличение размеров ферритного зерна вызывает повышение порога хладноломкости у мягкой листовой стали. У мелкозернистой стали ударная вязкость при понинсении температуры уменьшается плавно, а у крупнозернистой — резко [50].  [c.42]

Вместе с тем имеются другие данные о степени влияния количества циклов на склонность стали к хладноломкости. Исследуя влияние усталости на склонность к хладноломкости ряда сортов малоуглеродистой стали, Е. М. Шевандин с сотрудниками [74] пришел к выводу, что критическая температура хрупкости металлов при циклическом нагружении на уровне напряжения, превышающем на 10 и 30% предел усталости (вплоть до разрушения от усталости), изменяется незначительно— всего на 10—20°С.  [c.51]

Для каждого рассмотренного случая технологического режима сварки полностью выдерживалась описанная методика проведения экспериментов, в соответствии с которой из-потавливались составные валиковые пробы и сварные соединения для определения механических характеристик. В результате последующих испытаний получено множество температурных зависимостей ударной вязкости различных участков сварного соединения, исполненного по конкретному технологическому режиму. Имея такую зависимость, можно определять критическую температуру хрупкости для кан дого случая. В наших опытах в качестве критической температуры брали верхний порог хладноломкости (максимальная температура, при которой начинается резкое падение значений ударной вязкости)—3 кгс-м/см . Установленные при этом верхние пороги хладноломкости различных участков сварных соединений, изготовленных при разных режимах, сопоставлялись с соответствующими значениями погонной энергии сварки, приведенными к одинаковой толщине проб. Такой подход позволяет более четко выявить в конкретных случаях наиболее оптимальный режим сварки, обеспечивающий лучшую хладостойкость сварного соединения (рис. 24—26).  [c.68]


Хладноломкость — склонность материала к появлению (или зггачительному возрастанию) хрупкости при понижении температуры. Критерием оценки служит температура, при которой значение ударной вязкости равно минимально допустимому значению — порог хладноломкости критическая температура хрупкости) или другие показатели, нанримср доля кристаллического излома (пе более 50 % поверхности излома образца на ударный изгиб).  [c.280]

Водородная хладноломкость. Как известно [63], истинное сопротивление в момент разрыва (5J в области низких температур может резко снижаться при введении в титан водорода. У нелегированного титана с содержанием водорода 0,001% S, при понижении температуры непрерывно увеличивается, но при содержании водорода 0,012% увеличивается при понижении температуры только до —70° С. При дальнейшем уменьшении температуры испытания рост прекраш,ается. Увеличение содержания водорода сопровождается уменьшением уровня предельной прочности и расширением интервала температур, в пределах которого сохраняет постоянное значение. Напомним, что предел текучести мало изменяется при введении водорода и непрерывно повышается при снижении температуры испытания. Поэтому при определенных содержании водорода и температуре сопротивление разрыву оказывается меньше предела текучести. Металл переходит в хрупкое состояние. Снижение 5 связано с тем, что водород в титане находится в виде гидридной фазы, обладаюш,ей малым сопротивлением отрыву. При этом гидриды имеюг не глобулярную, а пластинчатую форму. В связи с этим микротреш,ины, возникаю-ш,ие при отрыве по гидридным пластинкам, оказываются больше критического размера трещ,ины, необходимого для хрупкого разрушения.  [c.116]

Многие металлы (Ре, Мо, 2п и др.), имеющие ОЦК и ГПУ кристаллические решетки, в зависимости от температуры могут разрушаться как вязко, так и хрупко. Понижение температуры обусловливает переход от вязкого к хрупкому разрушению. Это явление получило название хладноломкости. Явление хладноломкости можно объяснить схемой А. Ф. Иоффе (рис. 57). Понижение температуры практически не изменяет сопротивления отрыву (разрушающего напряжения), но повышает сопротивление пластической деформации (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях, меньших, чем предел текучести. Точка пересечения кривых о. , и 5отр, соответствующая температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости, или порога хладноломкости ( ц. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.80]


Смотреть страницы где упоминается термин Температура критическая хладноломкости : [c.324]    [c.221]    [c.10]    [c.129]    [c.131]    [c.19]    [c.417]    [c.368]    [c.165]    [c.43]   
Основы конструирования аппаратов и машин нефтеперерабатывающих заводов Издание 2 (1978) -- [ c.14 ]



ПОИСК



Влияние характера напряженного состояния, состояния поверхности, размера образцов на хладноломкость. Влияние скорости деформации на критическую температуру хрупкости

Испытания на хладноломкость и критическую температуру хрупкости

Температура критическая

Хладноломкость

Хладноломкость критическая температура (интервал хрупкости)



© 2025 Mash-xxl.info Реклама на сайте