Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЭАБ обработка — Характеристика технологических процессов

Анодно-механическая (АМ) обработка — Характеристика технологических процессов 681  [c.747]

ЭАБ обработка — Характеристика технологических процессов 682  [c.766]

ЭИМ обработка — Характеристика технологических процессов 681 — Характерные операции 682, 683  [c.766]

ЭИС обработка — Характеристика технологических процессов 682 — Характерные операции 683  [c.766]

Эк обработка — Характеристика технологических процессов 681  [c.766]


Таким образом, на стадии разработки технического предложения в качестве постоянных, заданных по величине параметров следует считать основные характеристики технологического процесса (методы, маршрут, режимы обработки). Это позволяет рассчитать в качестве исходных данных длительность технологических переходов — обработки элементарных поверхностей. Для вала, приведенного на рис. 1.5, /р имели следующие значения (мин)  [c.217]

До принятия стратегии управления точностью обработки должны быть предварительно изучены и учтены точностные характеристики технологического процесса. При этом ЭВМ используется для изучения процесса. Этому этапу соответствуют алгоритмы математической обработки результатов измерений параметров изделий с целью получения характеристик, необходимых для определения оптимальных условий статистического управления технологическими процессами. К таким характеристикам относятся законы распределения размеров и отклонений формы параметров изделий и автокорреляционные функции случайного процесса. Существенная часть алгоритмов статистического управления точностью — алгоритмы по определению границ регулирования случайных процессов с учетом автокорреляционных функций. Имея  [c.28]

Параметры, функционально связывающие стоимостные характеристики технологического процесса обработки данного класса деталей с геометрическими характеристиками данной детали.  [c.37]

Если контроль изделия производится в процессе обработки и при этом известны припуски, допуски, режим обработки и характеристики технологического процесса обрабатываемой детали, то, зная значение Ло по выбранной скорости вращения детали, можно определить рабочую частоту. При этом можно пользоваться готовыми номограммами (фиг. 58) или таблицами. Если после нахождения погрешности амплитуды ААу умножить эту АА на величину А , то получим действительное значение динамической погрешности АА.  [c.184]

По характеристике технологических процессов различают электрохимические и электроискровые методы обработки поверхностей.  [c.198]

На зависимость /р от режима обработки влияют выбранный метод обработки и степень концентрации операций, вид инструмента, закон его перемещения во время обработки и другие характеристики технологического процесса.  [c.30]

Характеристики технологических процессов в дискретном и непрерывном производствах существенно различаются. Так, в дискретном производстве выходная продукция измеряется количеством изделий, а не кубическими метрами или тоннами. Операции являются менее сложными и характеризуются меньшим числом параметров. Продолжительность операций по сравнению с непрерывным производством, как правило, меньше. Но несмотря на указанные различия, существует нечто общее в производствах дискретного и непрерывного типа. Целью производства любого типа является достижение определенных экономических показателей. В дискретном производстве существует ряд достаточно сложных операций, для которых ручная оптимизация параметров оказывается уже непригодной. Например, операция токарной обработки определяется достаточно большим числом параметров, ха-  [c.433]


Устанавливая при проектировании технологического процесса план и метод обработки деталей, одновременно указывают, на каком станке будет выполняться операция, и приводят его характеристику наименование станка, название завода-изготовителя, модель и основные размеры.  [c.131]

Внедрение безлюдной технологии требует решения задачи повышения продолжительности работы ГПМ без участия оператора. Например, необходимо обходить возникающие в процессе изготовления детали отказы по инструменту (как наиболее часто встречающиеся) путем уменьшения или увеличения технологических переходов операции и продолжать обработку без участия оператора. В случае выхода инструмента из строя обработка заготовки продолжается. При этом возможны альтернативные решения замена вышедшего из строя инструмента на дублирующий, замена на инструмент (инструменты), близкий по своим конструктивным и эксплуатационным характеристикам без изменения режимов резания (или с их изменением при постоянстве или увеличении количества переходов), пропуск технологического перехода (переходов). Пропущенные переходы запоминаются, и после устранения отказов (замена оператором вышедших из строя инструментов) деталь снова вызывается на обработку, которая ведется по дополнительному (доделочному) технологическому процессу [28].  [c.158]

В процессе анализа точности и стабильности технологических процессов (операций) определяют или уточняют модели формирования погрешностей обработки, модели изменения точности ТС во времени, параметры точности ТС, зависимости между параметрами изготовляемой продукции и параметрами ТС зависимости между погрешностями обработки на различных операциях рассматриваемого технологического процесса основные факторы, изменяющие точностные характеристики ТС пути и средства повышения точности ТС в процессе эксплуатации и оптимальные стратеги и технического обслуживания и ремонта средств технологического оснащения.  [c.67]

Параметр — численная характеристика основных размеров (шаг резьбы), режимов или состояний продукции (мощность двигателей), технологических процессов (обработка типовых деталей резанием), физических явлений (температура образования льда).  [c.8]

После полной конструктивной детализации общего вида требуется определить условия агрегирования (сборки) элементов и узлов в интегральную конструкцию ЭМП. Это достигается путем установления технологических параметров элементов и узлов. К технологическим параметрам относятся технологические допуски, классы точности и чистоты обработки поверхностей деталей, способы взаимного сопряжения и т. п. Выбор технологических параметров осуществляется с учетом прогрессивных технологических процессов, имеющихся производственных возможностей и преследует две основные цели 1) сохранение технологического разброса параметров и характеристик ЭМП в пределах, обеспечивающих требуемое качество функционирования в различных режимах работы 2) улучшение технико-экономических интегральных показателей производства и эксплуатации ЭМП.  [c.162]

Экономический эффект от унификации проявляется не только на стадии проектирования, производства, эксплуатации и ремонта изделий, но и в процессе технологической подготовки производства. Унификация в области технологии ведется с целью сокращения необоснованного разнообразия технологических процессов, уменьшения номенклатуры применяемых в производстве материалов, инструментов и оснастки. Важное значение имеет отработка технологичности конфигурации унифицированного изделия, которая должна быть проста в производстве, иметь малую трудоемкость изготовления, высокие эксплуатационные характеристики. При отработке технологичности изделий унифицируют общие нормы, классы чистоты обработки и классы точности, исходные заготовки, используемые для изготовления деталей.  [c.32]

Технологические процессы ионно-плазменной обработки материалов основаны на решении задач оптимизации условий напыления, обеспечивающих получение поверхностных слоев с требуемыми эксплуатационными характеристиками. К условиям ионно-плазменной обработки, как было сказано выше, относятся режимы генерации и осаждения ионных потоков, давление и состав газовой среды, температура подложки и состояние поверхности образца.  [c.248]


Переходя к последовательной и полной механизации не только основных технологических операций, изменяющих геометрические или физические характеристики объектов, но и вспомогательных операций (перемещение, ориентирование, фиксации объекта обработки) определенного производственного процесса, т. е. решая задачи комплексной механизации, создают машины-автоматы.  [c.8]

Технологическая надежность оборудования — это его свойство сохранять в заданных пределах и во времени значения показателей, определяющих качество осуществления технологического процесса. К показателям качества технологического оборудования относятся его геометрическая точность, жесткость, виброустойчивость и другие, которые определяют точность обработки, качество поверхности и физические характеристики материала обрабатываемой детали. Хотя показатели качества изготовляемых изделий зависят не только от оборудования, но и от технологической оснастки, инструмента, режимов обработки, квалификации рабочего и других причин, возможности оборудования играют, как правило, основную роль. Поэтому не только обеспечение высоких начальных характеристик технологического оборудования, но и длительное их сохранение в процессе работы — необходимое условие надежного осуществления технологического процесса.  [c.457]

Часто считают, что возникновение дефектов в процессе обработки является следствием нарушения технологической дисциплины, наличия оборудования с низкими техническими характеристиками, нарушения ритмичности работы предприятия, плохой организации труда и т. д. Такой взгляд односторонне и примитивно рассматривает причины возникновения дефектов, фиксируя лишь грубые нарушения в ходе технологического процесса.  [c.470]

Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]

Эти показатели в свою очередь можно выразить функционально через конкретные характеристики оборудования и технологических процессов, т. е. через те параметры, которые являются предметом проектирования. Например, коэффициент повышения производительности может быть математически определен через режимы обработки, число рабочих позиций, число участков, вместимость накопителей и др.  [c.43]

На завершающих стадиях проектирования (технический проект, разработка рабочей документации), когда основные проектные решения по выбранному варианту уже проработаны, т. е. определены технологический процесс, количество и тип оборудования, разработаны конструкции механизмов и пр., необходимо уточнение ожидаемых характеристик проектируемой системы, в том числе по производительности, с целью сравнения их с требуемыми (ожидаемая производительность и требуемая согласно производственной программе, ожидаемая точность обработки и допустимая, ожидаемые экономические показатели и нормативные). На данном этапе при расчетах ожидаемой производительности должны учитываться такие факторы, как проектные режимы работы, быстродействие механизмов и устройств и ожидаемый уровень их надежности, степень загрузки оборудования и пр. По результатам расчетов и сопоставления величин ожидаемой и требуемой производительности могут быть скорректированы проектные решения (режимы обработки, число параллельно работающих единиц оборудования, нормы обслуживания наладчиками, система эксплуатации инструментов и пр.). Расчеты производятся в условиях неполной и недостаточно достоверной исходной информации, особенно в части ожидаемой надежности работы, величины организационных простоев и пр.  [c.65]

Недостаток метода заключается в трудности достоверного подбора типового представителя, так как выбранная деталь может иметь средние характеристики по длительности обработки, но далеко не средние по холостым ходам или времени переналадки. Кроме того, формула (4.12), по существу, не содержит ни одного параметра станка, технологического процесса и пр. Между тем очевидно, что производительность станков с ЧПУ определяется характером комплекта обрабатываемых деталей и технологических процессов их обработки техническими характеристиками оборудования условиями эксплуатации в данном конкретном производстве. Эти факторы должны найти отражение в формулах производительности.  [c.81]


Диаграммы взаимосвязи точности деталей на различных стадиях технологического процесса (см. рис. 7.7) позволяют экспериментально рассчитать характеристики партионной точности согласно формуле (7.1) а) диапазон рассеяния размеров, обусловленный собственными характеристиками оборудования и технологического процесса ( >с б) коэффициент передачи исходных погрешностей А. Величина (Ис определяется либо непосредственно из диаграммы Ш - = / (w i)i если имеется партия с нулевым рассеянием, либо экстраполяцией. Так, согласно рис. 7.7 (Ото = 156 мкм, Величина А рассчитывается по характеристикам двух любых партий. Например, согласно тому же рис. 7.7 у второй и четвертой партий рассеяние составило после токарной обработки 128 и 296 мкм, после термообработки соответственно 215 и 298 мкм. Отсюда  [c.178]

В данном случае точность внутреннего диаметра колец на 94 % определяется характеристиками последней операции (жесткость, геометрическая точность и виброустойчивость внутришлифовального автомата, технологические режимы и т. д.) и только на 6 % — всеми предшествующими операциями технологического процесса. Следовательно, с точки зрения обеспечения заданной точности готовых изделий высокая точность выполнения предварительных операций в данном случае не обязательна. Можно даже исключать токарную обработку за счет получения точных заготовок и использования силового шлифования.  [c.179]

Согласно формуле (7.2) точность детали после первой операции обработки в зависимости от точности заготовки (соц) и характеристик оборудования и технологических процессов на данной операции (йс, и Ai)  [c.180]

На стадии рабочего проектирования, когда оцениваются паспортные характеристики будущей автоматической линии, в том числе ожидаемые показатели производительности, надежности в работе и экономической эффективности, появляется возможность уточненных расчетов. На этой стадии полностью определены количество и номенклатура конструктивных элементов линии, выполнены технологические и конструктивные разработки, известны распределение технологического процесса по позициям обработки, степень совмещения операций и холостых ходов, технологические режимы для всех операций и переходов, конструктивные размеры станочных узлов, транспортно-загрузочных систем, технологических приспособлений. Это позволяет рассчитывать и прогнозировать длительность рабочего цикла Т и его элементов — время рабочих fp и холостых ходов с достаточной достоверностью (если в дальнейшем не будут изменены технологические режимы).  [c.206]

Таким образом, в результате шагового отбора из нескольких сотен возможных структурно-компоновочных вариантов построения линии обработки вала по рис. 1.5 в качестве оптимального следует принять однопоточную автоматическую линию из пяти рабочих позиций (технологический процесс дифференцирован на пять частей), разделенную на два участка-секции, с тремя станками-дублерами. Ожидаемые характеристики линии стоимость К = 130 тыс. руб., длительность рабочего цикла по лимитирующему станку Т= 1,65 мин, производительность <3ал = 450 шт/смену.  [c.232]

Статистические методы контроля параметров технологического процесса. Статистические методы контроля могут быть применены к оценке параметров технологического процесса и их изменений под действием различных факторов. Контролируются характеристики качества оборудования, технологической оснастки и инструмента, проверяются методы их наладки, оценивается рабочая среда, а также контролируются параметры изготовляемых изделий. Принципиальная разница по сравнению с контролем качества продукции здесь заключается в том, что анализируются процесс и тенденции развития или стабилизации технологического процесса, близость его параметров к граничным значениям и т. п. Поэтому возможность появления де( ктного изделия не будет неожиданностью, а явится следствием определенного (как правило, постепенного) изменения характеристик технологического процесса. Обнаружение этих тенденций позволит принять меры по предотвращению брака, т. е. создать условия для бездефектного изготовления продукции. Для металлообрабатывающей промышленности применяются такие статистические методы контроля, как составление точечных диаграмм изменения точности обработки, по которым можно определить рассеивание параметров точности, смещение центра группирования во времени, вероятность выхода размера за пределы допуска или наличие запаса по точности. Эти  [c.453]

Подсистема Технолог-1 производит поиск в архиве Анало - ранее спроектированных типовых и групповых технологических процессов, выбор вариантов обработки деталей, определение маршрутов обработки поверхностен выбор видов обработки детали, распредэ-ленне переходов по видам обработки, определение технологических маршрутов обработки детали, определение технологических опер.а-нин, группирование деталей по методам обработки и по размерным характеристикам, выбор стандартных инструментов и приспособлений, а также универсального оборудования и др.  [c.84]

Вторая подсистема дает информацию о режимах резания на трех уровнях. Уровень 1 содержит ориентировочные данные по режимам резания, представленные в виде таблиц. Режимы резания учитывают современные методы обработки, характеристики инструментов и их материалов. Уровень 2 представляет табличные модели, учитывающие большое число условий, влияющих на принимаемое решение, например стойкость инструмента, мощность привода станка, требования к качеству поверхностного слоя детали и др. Уровень 3 дает возможность получать пользователю оптимальные режимы резания, относящиеся к одному или нескольким изделиям, для которых разрабатываются технологические процессы. В этом случае задача сводиг-  [c.86]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

Стремление получить поверхнрстный слой с наилучшими эксплуатационными характеристиками привело к применению различных технологических процессов финишной обработки, таких как шлифование, суперфиниш, полирование, абразивная доводка и др. При этом на строение поверхностного слоя и его геометрические и физические параметры оказывает влияние не только вид технологического процесса окончательной обработки, но и режимы обработки, обусловливающие сложные процессы формирования данного рельефа (см. гл. 10, п. 5).  [c.77]


Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Известно также, что параметры шероховатости поверхности оказывают существенное влияние на сопротивление усталости. В общем случае предел усталости повышается с улучшением качества поверхностного слоя. Кроме того, на них влияет направление следов обработки при их совпадении с действием главного напряжения предел усталости выше. Финишная обработка поверхности, которая в основном определяет конфигурацию микроскопических рисок и механические свойства поверхностного слоя, существенно влияет н а предел выносливости даже при одинаковом классе шероховатости. Например, в работе [127] приведены результаты испытаний на выносливость образцов из сталей Р18, 9ХМФИ9Х, обработанных алмазным и обычным шлифованием. Сопротивляемость усталостному разрушению при шлифовании кругами из синтетических алмазов повышается на 20—45% при контактных нагрузках и до 30% при изгибе. Это связано с характеристикой рельефа поверхности, когда число царапин на единицу поверхности и их глубина значительно меньше при алмазном шлифовании, чем при абразивном, а рельеф становится более гладким (см. также рис. 150). Проведенные исследования позволили повысить стойкость валков для станов холодной прокатки вследствие правильного выбора технологического процесса.  [c.439]

Трудности в обеспечении надежности технологического процесса связаны с большой сложностью технологических систем, наличием многочисленных и разнообразных взаимосвязей, с высокими требованиями к его надежности. Сделаем такой гипотетический расчет. Пусть современная сложная машина состоит из п = 10° деталей. Каждая деталь при обработке подвергается большому числу операций и переходов, при этом одновременно контролируются в среднем 100 параметров. Тогда у машины в процессе ее изготовления должно выдерживаться и контролироваться 10 параметров. Примем, что только один параметр из 1000 влияет на надежность, тогда с надежностью машины связано 10 параметров. Если на каждой операции, связанной с обеспечением данного параметра (точности, шероховатости, твердости, химсостава, жесткости, прочности и т. п.), будет возникать один отказ на 10 ООО изделий, когда значения параметра выйдут за пределы допуска, то вероятность безотказности технологического процесса на данной операции будет Р (i) = 0,9999. Однако в этом случае каждая машина в среднем будет иметь один недопустимый отказ, сЁязанный с технологическим процессом. Таким образом, достаточно высокая надежность осуществления технологического процесса на отдельной операции приводит к недопустимым характеристикам надежности технологического процесса изготовления всей машины, что говорит о чрезвычайно высоких требованиях, которые должны предъявляться к надежности осуществления технологического процесса.  [c.441]

Основное формирование выходных параметров происходит на последних (финишных) операциях, а параметры, контролируемые на промежуточных операциях, затем изменяются и их значение не играет существенной роли. Например, точность обработки по диаметру отверстия при сверлении и зенкеровании полностью определяется финишной операцией (зенкерованием). Поэтому лишь часть параметров промежуточных операций переходит в разряд выходных параметров техпроцес са (I группа, рис. 144). Чем ближе данная операция к окончательному изготовлению изделия тем больше ее влияние на выходные параметры изделия. Исключение составляют обычно характеристики материала, которые являются входными параметрами технологического процесса, но определяют в большой степени и его окончательные свойства.  [c.444]

Впервые термин технологическая надежность станков был введен А. С. Прониковым [63]. Это понятие определено А. С. Прониковым как способность станка сохранять качественные показатели технологического процесса (точность обработки и качество поверхности) в течение заданного времени . В работах 11, 24, 72] были рассмотрены некоторые количественные оценки технологической надежности токарно-револьверных автоматов, прецизионных токарных станков, бесцентровых внутришлифовальных, радиально-сверлильных и других видов станков. В этих работах исследуется в основном только способность сохранять точность обработки в течение определенного периода времени. Но, очевидно, что точностные характеристики обработанных деталей зависят не только от состояния станка, но и от многих других факторов (состояние инструмента, оснастки, характеристики материалов и т. д.). Поэтому логическим развитием понятия технологическая надежность станка явилось введение термина технологическая надежность . И. В. Дунин-Барковский [24] определил это понятие как свойство технологического оборудования и производственно-технических систем, таких, как станок — приспособление-инструмент — деталь (СПИД), система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранять на за-  [c.184]

Важное значение для машиностроения имело развитие теории механических передач, т. е. различных зубчатых механизмов. Геометрия плоского-и пространственного зацепления начала развиваться еше до Великой Отечественной зойны на базе работ X. И. Гохмана и Н. И. Мерцалова. В первую очередь б ла развита теория эвольвентной цилиндрической зубчатой передачи. Развитие этой теории и методов профилирования зубьев тесно, увязывалось с технологическими процессами обработки зубчатых колес. После войны существенное развитие получает теория некруглых зубчатых механизмов, нашедших применение в приборостроении. В последнее десятилетие внимание исследователей было посвящено геометрии ирострапствен-ных зацеплений. Получены новые виды зацеплений, изучены динамические характеристики различных зацеплений, разработаны инженерные методьг их расчета и проектирования. Существенное внимание уделялось синтезу сложных зубчатых механизмов. Особенное внимание уделено методам проектирования редукторов дифференциальных, планетарных и с неподвижными осями колес. Некоторое развитие получили методы анализа и синтеза бесступенчатых передач.  [c.28]

В 1950—1958 гг. были спроектированы ЭНИМСом и изготовлены заводом Станкоконструкция автоматические линии для обработки деталей типа тел вращения (валов и роторов электродвигателей, зубчатых колес, шлицевых валиков и т. и.). В 1950 г. ими же был спроектирован и изготовлен автоматический завод для производства алюминиевых поршней. Все процессы, начиная с расплавления брусков металла и отливки поршней, термообработки и механической обработки, автоматической доводки поршней по весо-Boii характеристике и кончая контролел и упаковкой готовых поршней в коробки, были автоматизированы. Комплексная автоматизация массового производства поршней открыла многие узкие места в технологии механической обработки деталей и их контроля, что способствовало в дальнейшем значительному усовершенствованию конструкции специальных и агрегатных станков и технологических процессов обработки металлов.  [c.81]

Для машиностроения характерны следующие виды простоев а) собственные или технические простои 0о, обусловленные техническими характеристиками самого оборудования (смена и регулировка инструмента, обнаружение и устранение отказов в работе, уборка и очистка, ремонт и профилактика и др.) они непосредственно связаны технологическими процессами и конструкциями машин и механизмов б) организационные простои S 0орг, обусловленные внешними факторами, которые, как правило, не связаны с технологией и конструкцией машин (отсутствие обрабатываемых деталей, инструмента, электроэнергии, несвоевременный приход и уход обслуживающих рабочих и др.) они определяются уровнем производства, степенью загрузки оборудования в данных конкретных условиях в) простои для переналадки оборудования на обработку новой продукции (2 0nep)f которые занимают промежуточное положение между предыдущими видами простоев, так как частота их определяется организационными факторами, а длительность — техническими.  [c.70]


Таким образом, здесь сменная производительность оборудования с ЧПУ в условиях серийного производства выражена как функциональная зависимость 1) характеристик комплекта обрабатываемых деталей и технологических процессов — средней длительности единичного перехода среднего числа переходов 5 и обрабатывающих инструментов А при обработке детали 2) характеристик самого технологического оборудования и его оснастки — быстроты выполнения холостых ходов /х1 и 7x21 быстроты вспомогательных процессов загрузки и съема t n, надежности в работе (О и Тв, мобильности при переналадках Gj и 0а 3) характеристик того конкретного производства, где эксплуатируется данное оборудование—организационных потерь и партион-  [c.83]


Смотреть страницы где упоминается термин ЭАБ обработка — Характеристика технологических процессов : [c.232]    [c.105]    [c.825]    [c.53]    [c.439]    [c.5]   
Краткий справочник металлиста (1972) -- [ c.682 ]



ПОИСК



Процесс Характеристика

Процесс обработки

Технологические характеристики

Технологический процесс обработки



© 2025 Mash-xxl.info Реклама на сайте