Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы алюминиевые

Для иллюстрации выбрана задача о плоской деформации армированного параллельными волокнами композита под действием одноосной нагрузки, приложенной в перпендикулярной волокнам плоскости центры круговых сечений волокон лежат в узлах прямоугольной сетки. В этой задаче исследованы случаи использования в качестве матрицы алюминиевого сплава и эпоксидной смолы, кривые одноосного растяжения которых приведены на рис. 1.  [c.228]


Матрица (алюминиевый сплав) Содержание волокна, об. % Температура, С Давление, КГС/СМ2 Время выдерж- ки. мин Предел прочности в поперечном направлении. кгс/мм Среда Источ- ник  [c.135]

Таблица 3.39. Прочность порошковых алюминиевых сплавов и композиционных материалов на алюминиевой и магниевой матрице при высоких температурах [5,14,24] Таблица 3.39. Прочность порошковых <a href="/info/29899">алюминиевых сплавов</a> и композиционных материалов на алюминиевой и магниевой матрице при высоких температурах [5,14,24]
Гидровинтовые прессы изготовляют усилием 1...100 МН. Прессы снабжены нижним выталкивателем и приспособлены для штамповки в разъемной матрице. Они менее быстроходны, чем винтовые фрикционные прессы, компактны и более мощны (энергия удара в десятки раз больше энергии наиболее крупных винтовых фрикционных прессов). На гидровинтовых прессах получают поковки из алюминиевых сплавов с высокими ребрами толщиной до 0,5 мм при штамповочном уклоне 0,5° и радиусе закругления 0,3 мм.  [c.131]

Рекомендации относительно величины давления для алюминиевых сплавов несколько иные, чем для медных [56]. Эвтектические сплавы типа силумина требуют применения более высоких давлений, так как образующийся около стенок матрицы трубчатый каркас, являясь опорой для прессующего пуансона, создает препятствия для прессования кристаллизующегося расплава. В алюминиевых сплавах типа твердого раствора (например, АЛ8) устранение усадочных дефектов может быть достигнуто при более низких значениях давления прессования.  [c.96]

Н. Н. Белоусов [3] исследовал формирование слитков из алюминиевых сплавов с применением радиоактивных изотопов. Для этого предварительно приготовляли лигатуры, состоящие из исследуемого сплава и радиоактивного изотопа. Вначале в матрицу заливали обычный сплав, а перед опусканием пуансона в верхнюю часть матрицы заливали сплав с радиоактивным изотопом. Изучение авторадиограмм, снятых с центральных продольных сечений слитков (Z) = 125 мм, Я//)=2), показало, что при кристаллизации слитков под атмосферным давлением радиоактивный изотоп распространялся на меньшую глубину, чем при кристаллизации под поршневым давлением. Однако под действием поршневого давления изотопы не проникают в нижнюю часть слитка. Это свидетельствует о том, что влияние давления, приложенного в процессе затвердевания сплава, распространяется в основном на верхнюю часть слитка.  [c.99]


Борные волокна и алюминиевая матрица. . . 9,2 3 Параллельное [138, 139]  [c.266]

Исследовались также поверхности скоростей и волновые поверхности для композиционных материалов на основе волокон бора и алюминиевой матрицы [ИЗ]. Для таких систем поверхность сдвиговой волны близка к изотропной и не имеет изломов.  [c.275]

Рис. 18. Экспериментальная кривая дисперсии для продольных волн в композиционном материале на основе волокон вольфрама и алюминиевой матрицы (а) [168] и вторая ветвь и частота среза в окрестности 4 МГц (б) Рис. 18. Экспериментальная <a href="/info/329298">кривая дисперсии</a> для <a href="/info/12458">продольных волн</a> в композиционном материале на основе волокон вольфрама и алюминиевой матрицы (а) [168] и вторая ветвь и <a href="/info/8935">частота среза</a> в окрестности 4 МГц (б)
Типичные кривые напряжение — деформация при одноосном растяжении для двух часто используемых типов матрицы представлены на рис. 1. На этом рисунке видно, что как для высоко-полимера (эпоксидной смолы 828/1031), так и для металла (алюминиевого сплава 2024) проявляется нелинейность, особенно ярко выраженная для металла. Очевидно, упругий анализ применим только на начальном участке кривой напряжение — деформация.  [c.197]

На рис. 7 показаны изолинии октаэдрического касательного напряжения на шагах № 1, 2, 5 и 10 приращения нагрузки. Численные значения напряжений, соответствующие этим, а также всем другим представленным здесь изолиниям октаэдрического касательного напряжения, нормированы делением их на величину, равную пределу текучести материала (то(т) = = 6128 фунт/дюйм для алюминиевой матрицы см. рис. 1). Следовательно, области, для которых то/то(т) 1 (затененные на рис. 7 и ограниченные соответствующими изолиниями), находятся в состоянии пластичности.  [c.230]

Адамс [1] и Райт [55] изучали влияние пластического течения матрицы на -поведение композита при поперечном нагружении. На рис. 10 величина напряжений на поверхности раздела соответствует случаю, когда приложенная к композиту нагрузка в 2,9 раза превышает нагрузку, при которой начинается пластическое течение в матрице (для алюминиевой матрицы в состоянии деформационного упрочнения напряжение начала пластического течения составляет 380 кГ/ом ). В таких условиях пластическое течение охватывает почти весь объем матрицы, и область поверхности раздела в интервале углов О—80° оказывается в определенной мере пластически деформированной. Несмотря на это, рас-  [c.57]

Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]


В ряде случаев существенное влияние на структуру и свойства оказывает термическая обработка композиционного материала, например в боралюминиевой композиции, при использовании в качестве матрицы алюминиевых сплавов, предел прочности при растяжении в направлении поперек укладки волокон может быть увеличен в 2—3 раза за счет применения термической обработки. Прочность связи между компонентами и сдвиговые характеристики материалов, полученных сваркой взрывом или экструзией, могут быть улучшены в результате правильно выбранного режима отжига. Кроме того, термическая обработка может изменить структуру вследствие образования промежуточных фаз, положительное или отрицательное влияние которых на структуру и свойства следует учитывать.  [c.9]

Матрица (алюминиевый Предел прочности , кгс/мм2 Молуль упругости, кгс/мм2 Удлинение, %  [c.205]

Первая попытка получения углеалгоминиевого композиционного материала относится к 1961 г. Авторы работы [51] использовали в качестве матрицы алюминиевый сплав с 4% Си. Нарубленные углеродные волокна смешивали с порошком матричного сплава (порошок изготовляли в шаровой мельнице) и подвергали смесь горячей экструзии при температурах от 365 до 595° С. Экструдированные образцы композиционного материала содержали 20—40% (по массе) углеродных волокон и были значительно прочнее, чем экструдированные образцы матричного сплава. К сожалению, предел прочности при растяжении полученного материала не превышал 242 МН/м (24,7 кгс/мм ), исследовательская работа была прекращена из-за недостаточной црочиости изготовляемых в то время углеродных волокон.  [c.362]

По данным А. М. Робертсона и др., для пайки композиционных материалов на основе матрицы алюминиевого сплава и бороволокнистого наполнителя оказался пригодным припой d — 5% Ag. Сопротивление срезу соединений при температуре 20° С равно 8,5 кгс/мм. Максимальная температура эксплуатации 315 С.  [c.97]

Наиб )лее подробно изучены контактные процессы систем, для которых важна большая удельная прочность, а также контактные процессы при изготовлении композиционных жаропрочных отливок, а именно для матриц алюминиевой А1—В, A1— , А1—Fe магниевой Mg—В, Mg—С титановой Ti--B, Ti—Si , Ti—AI2O3 никелевой Ni—W.  [c.675]

При горячей вытяжке днищ из алюминиевых, магниевых и молибденовых сплавов с целью повышения предельной степени деформации применяют искусственный нагрев фланцевой части с одновременным охлавдением центральной части заготовки. На рис. 4.15 приведена конструктивная схема штампа для вытяжки с подогревом фланца. Здесь матрица и прижим штампа нагреваются при помощи трубчатых электронагревателей сопротивления, вмонтированных во внутрениэю их полость, а пуансон охлаждается циркулирующей в кем проточной водой.  [c.93]

Наибольшее внимание привлекают алюминиевые сплавы, армированные волокнами из бора, углерода, нержавеющей стали и бериллия титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин я компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупроч ненного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).  [c.640]

Единственный реальный способ пспользовання нитевидных кристаллов — это создание композитных материалов, состоящих из усов, ориентированно уложенных в металлической (напрп.мер, алюминиевой) или пластмассовой матрице. Если усы имеют длину, достаточную для прочного сцепления с матрицей по боковой поверхности усов, то удается в значительной мере использовать их прочность. Прочность композитных материалов, содержащих по массе 40-50% усов, в направлении вдоль сов составляет лрн-.мерно 30% прочности усов. Так, композиция из сапфирных усов (Л),Оз) и металлического алюмивия имеет прочность па растяжение 500-600 кгс/.ммь  [c.174]

ТЕМПЕРАТУРНЫЙ УРОВЕНЬ РЕКРИСТАЛЛИЗАЦИИ ГЕТЕРОФАЗНЫХ СПЛАВОВ. Большинство промышленных сплавов является сплавами гетерофазными. Чаще всего они представляют пластичную поликристал-лическую матрицу, содержащую вкрапления твердых дисперсных частиц. Такими сплавами являются все углеродистые и легированные стали, алюминиевые сплавы, жаропрочные никелевые и железные сплавы, композитные сплавы металл — тугоплавная дисперсная фаза.  [c.349]

Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Уменьшить время выдержки Тд можно за счет повышения скорости внедрения пуансона в расплав. Однако при скорости, равной 0,6—0,8 м/с, возникает вихревое движение металла в прессформе, происходит захват воздуха, выбрызгивание расплава в зазор между матрицей и пуансоном, могут возникнуть трещины на внутренней поверхности отливки. Поэтому рекомендуемые значения скорости находятся в пределах 0,08—0,2 м/с. Для каждого сплава характерны определенные значения скорости внедрения пуансона, обеспечивающие достижение наиболее благоприятного сочетания структуры и механических свойств. Для сталей они меньше, для алюминиевых сплавов больше.  [c.85]


Совместное влияние вибрации и давления исследовано на слитках ( ) = 55-ь100 мм, ///D=75-=-90 мм) и стаканах (D=55 мм, Я=75- 90 мм, Xoт=15- 35 мм) из оловянных бронз Бр. ОЦС5-5-5 и Бр. ОЦ10-2, а также из некоторых алюминиевых сплавов [91]. Вибрация расплаву, залитому в матрицу прессформы, передавалась через выталкиватель. Частота колебаний составила 120 Гц, амплитуда 0,8—1 мм.  [c.140]

Рис. 8. Типичные диаграммы деформирования однонаправленного композиционного материала на основе волокон бора и алюминиевой матрицы при Рис. 8. Типичные <a href="/info/28732">диаграммы деформирования</a> однонаправленного <a href="/info/1547">композиционного материала</a> на основе волокон бора и алюминиевой матрицы при
Рис. 1. Кривая напряжение — деформация в опыте на чистое растяжение материала матрицы напряжения вфунт/дюйм , деформации в % (по Адамсу [2]). Кривая а соответствует алюминиевому сплаву 2024, отожженному в течение 2 ч при 482 °С начальный модуль упругости равен 8,1-10 фунт/дюйм , коэффициент Пуассона равен 0,32. Кривая б соответствует эпоксидной смоле 828/1031 с начальным модулем упругости 0,52 10 фунт/дюйм и коэффициентом Пуассона 0,35. Рис. 1. Кривая напряжение — деформация в опыте на <a href="/info/25669">чистое растяжение</a> <a href="/info/133391">материала матрицы</a> напряжения вфунт/дюйм , деформации в % (по Адамсу [2]). Кривая а соответствует <a href="/info/29899">алюминиевому сплаву</a> 2024, отожженному в течение 2 ч при 482 °С начальный <a href="/info/487">модуль упругости</a> равен 8,1-10 фунт/дюйм , <a href="/info/4894">коэффициент Пуассона</a> равен 0,32. Кривая б соответствует <a href="/info/33628">эпоксидной смоле</a> 828/1031 с начальным <a href="/info/487">модулем упругости</a> 0,52 10 фунт/дюйм и коэффициентом Пуассона 0,35.
Использование описанного выше разбиения для алюминиевой матрицы со свойствами, показанными на рис. 1, и борово-локон при нагрузке, параллельной оси х, приводит к следующим результатам.  [c.230]

Представляет интерес случай квадратной укладки тех же бороволокон в алюминиевой матрице, когда расстояния между центрами волокон одинаковы по направлениям обеих осей координат и равны расстоянию между центрами волокон вдоль оси л для прямоугольной укладки, показанной на рис. 6—8. Это расстояние соответствует объемной доле волокон 70%. Некоторые из полученных результатов представлены на рис. 9. Начало пластического течения предсказывается при напряжении 13 230 фунт/дюйм (отмеченном на рис. 9 засечками). Однако,  [c.233]

Все результаты, представленные выше, относились к частному виду композита, состоящего из бороволокон и алюминиевой матрицы. Результаты для бороэпоксидного композита, содержащего 70% волокон, уложенных на равном расстоянии друг от друга, показаны на рис. 10. Кривая чистого растяжения образца материала матрицы приведена на рис. 1, свойства  [c.235]

Подробное исследование композиционного материала, состоящего из вольфрамовых нитей, заключенных в алюминиевую матрицу, приведено в работе Сазерленда и Лингла (70]. Данный композит был выбран по следующим причинам (1) он очень  [c.383]

Тайсон и Дэвис [66] испытывали модель, состоящую из алюминиевой полосы прямоугольного поперечного сечения, заделанной в паз пластины из фотоупругого материала той же толщины. При нагружении модели в направлении волокна вблизи прямоугольного конца наблюдались максимальные касательные напряжения, превосходящие номинальное растягивающее напряжение в матрице в 2,5 раза. Были получены распределения по длине волокна максимального касательного напряжения и касательного напряжения на границе между волокном и матрицей. На расстоянии от конца волокна, превосходящем два диаметра, экспериментальные результаты согласуются с аналитическими.  [c.517]

При первом ознакомлении может показаться, что чрезмерное внимание уделено в книге работам группы Отделения солнечной энергии компании Интернэйшнл Харвестер . Исследования поверхностей раздела пользовались широкой поддержкой ВВС США, но ранее они почти не публиковались, в частности, потому, что некоторые идеи (например, концепция окисной связи в композитах с алюминиевой матрицей) в течение нескольких лет находились на стадии разработки и проверки и лишь недавно были четко сформулированы. Тем не менее, в данном томе представлены работы и других важных центров по исследованию поверхности раздела, что обеспечивает объективность изложения. Кроме того, почти все главы представляют собой в основном обзор и критиче-  [c.9]

Допустимая степень взаимодействия компонентов в системах третьего класса зависит от многих других характеристик композита. Одна из важнейших характеристик — сопротивление распространению каждого конца трещины в реакционной зоне, поскольку оно определяет величину раскрытия трещины, а следовательно, и создаваемую трещинами концентрацию напряжений. Согласно всем имеющимся данным, допустимая длина трещины в системе титан — бор увеличивается с ростом предела упругости титановой матрицы. Однако если волокно не абсолютно упруго, а обладает определенной пластичностью, то критическая длина трещины может быть много больше. Значит, много больше может быть и толщина реакционной зоны. Соответствующий пример, относящийся к системе псевдопервого класса, имеется в работе Джонса [23], который исследовал композиты алюминиевый сплав 2024 — нержавеющая сталь. Хотя на большинстве образцов взаимодействия не наблюдалось, в нескольких случаях на малоугловом шлифе была обнаружена третья фаза вокруг волокон. Один из таких образцов, где хорошо видна образующаяся при реакции фаза, изображен на рис. 5. Фазу пересекают многочисленные, регулярно располо-  [c.22]

Алюминиевая матрица — в верхней части фотоснимков. На снимке а — видны трещины в алкуминяевоП матрице, на обоих снимках — трещины в реакционной зоне.  [c.23]

Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]

В этом особом случае химическое взаимодействие может быть представлено в виде двух последовательных реакций, которые иногда практически неразличимы. Руди [36] широко использовал термин обменная реакция для описания процесса установления равновесия между двумя фазами в системе с тремя и более составляющими. Хорошим примером обменно-реакционной связи служит связь титано-алюминиевой матрицы с борным волокном. Вслед за реакцией образования диборида, содержащего титан и алюминий, происходит обмен между атомами титана матрицы и атомами алюминия диборида. На рис. 1 показаны полученные Блэкберном и др. [6] результаты микрорентгеноспектрального анализа состава слоев в зоне взаимодействия сплава Ti-SAl-lMo-lV с бором. В результате оттеснения алюминия растущим диборидам концентрация А1 в сплаве повышается с 8 до 14%. Согласно Кляйну и др. [20], оттеснение алюминия при обменной реакции приводит к уменьшению константы скорости реакции между бором и сплавом с 10% А1 при 1033 К от 5,2-10- до 3,4-10-7 см/с /.  [c.84]

Особый случай представляет собой образование связи между алюминиевой матрицей и волокнами бора или карбида кремния. Работы, проведенные в лаборатории автора, показали, что многие особенности связи в этих системах можно объяснить, предположив образование связи между естественными окисными пленками на поверхности алюминия и, соответственно, пленками окиси бора или окиси кремния на волокне. Кажущаяся инертность алюминия в контакте с бором объясняется связью через окисные пленки, поскольку при непосредственном соприкосновении эти элементы легко вступают в реакцию. Такое взаимодействие происходит в случае пропитки расплавленным алюминием, который разрушает окисную пленку путем высокотемпературной эрозии или другого подобного механизма. Для описания таких композитов в гл. 1 введен термин системы псевдопервого класса . Веские доказательства в пользу этой модели получены Кляйном и Меткалфом 118] в опытах по извлечению окисной пленки. В дальнейшем существование окисной связи и присутствие окисных пле-  [c.86]


Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]


Смотреть страницы где упоминается термин Матрицы алюминиевые : [c.305]    [c.199]    [c.121]    [c.308]    [c.190]    [c.17]    [c.33]    [c.87]    [c.98]    [c.128]    [c.177]    [c.178]   
Применение композиционных материалов в технике Том 3 (1978) -- [ c.74 , c.449 ]



ПОИСК



Композиционные материалы с алюминиевой матрицей

Композиционные материалы с алюминиевой матрицей, армированные стальной проволокой и другими материалами

Металлокомпозиты алюминиевые, контроль совместимости волокон с матрицей



© 2025 Mash-xxl.info Реклама на сайте